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1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
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New approach: results

• Computational experiment to compare the old 
and the new approach with respect to:
– The number of instances solved

– The computation speed (CPU times)

– The average maximum number of states stored in 
memory

• We use a dataset with 30 projects for each:
– Number of activities (n between 10 & 70)

– Order Strength (OS equal to 0.8, 0.6, and 0.4)
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n = 30 30 30 30

n = 40 30 30 29
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n = 60 30 30 0

n = 70 30 29 0

OLD
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Average CPU time (sec)

NEW

On average, we improve computation 
times by a factor of 180!
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OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 2.87

n = 40 0.00 1.28 30.4

n = 50 0.00 4.87 210

n = 60 0.00 20.2 1693

n = 70 0.00 79.1 11006

NEW

Average maximum # states (x1000)

On average, we reduce memory 
requirements by a factor of 364!
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SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60
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SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60

We are even able to solve 196 instances of the 
J90 dataset and 3 instances of the J120 dataset
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and Creemers (2015) and obtain an increase in 
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Contributions

We can use our model to find the optimal 
expected NPV for projects with up to 120 

activities that have general activity durations!

Our model can also be used to study the SRCPSP 
where the execution of activities is allowed to be 

interrupted (i.e., we can assess the value of 
splitting activities).




