
The preemptive stochastic resource-
constrained project scheduling
problem: An efficient optimal 

solution procedure

Stefan Creemers
(December 5, 2016)



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



Past work: overview

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.

Creemers(2015) Minimizing the 
makespanof a project with 
stochastic activity durations 
under resource constraints, 

Journal of Scheduling.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

1. Minimum-makespan objective
2. Renewable resources
3. General activity durations (PH 

approximation)
4. Use of an improved/modified 

SDP recursion

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.

Creemers(2015) Minimizing the 
makespanof a project with 
stochastic activity durations 
under resource constraints, 

Journal of Scheduling.



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

PAST 
WORK



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

PAST 
WORK

Main bottleneck = memory!



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. No UDCs
6. Upper bound state space = 2n

? NEW 
APPROACH

PAST 
WORK

Main bottleneck = memory!



New approach: results

• Computational experiment to compare the old 
and the new approach with respect to:
– The number of instances solved

– The computation speed (CPU times)

– The average maximum number of states stored in 
memory

• We use a dataset with 30 projects for each:
– Number of activities (n between 10 & 70)

– Order Strength (OS equal to 0.8, 0.6, and 0.4)



New approach: 
number of instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 16

n = 60 30 30 0

n = 70 30 29 0

OLD

Number solved (out of 30)



New approach: 
number of instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 16

n = 60 30 30 0

n = 70 30 29 0

OLD

Number solved (out of 30)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW

Number solved (out of 30)



New approach: 
average CPU time (sec)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 0.00

n = 40 0.00 0.00 41.1

n = 50 0.00 3.02 899

n = 60 0.00 39.4 NA

n = 70 0.00 365 NA

Average CPU time (sec)

OLD



New approach: 
average CPU time (sec)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 0.00

n = 40 0.00 0.00 41.1

n = 50 0.00 3.02 899

n = 60 0.00 39.4 NA

n = 70 0.00 365 NA

Average CPU time (sec)

OLD

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 0.00

n = 40 0.00 0.00 12.3

n = 50 0.00 0.00 270

n = 60 0.00 6.57 8960

n = 70 0.00 61.2 195691

Average CPU time (sec)

NEW

On average, we improve computation 
times by a factor of 180!



New approach: 
average maximum number of states

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 2.39 38.6

n = 30 0.00 24.8 934

n = 40 2.9 273 25413

n = 50 9.97 2155 315807

n = 60 37.9 21140 NA

n = 70 112 149925 NA

Average maximum # states (x1000)

OLD



New approach: 
average maximum number of states

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 2.39 38.6

n = 30 0.00 24.8 934

n = 40 2.9 273 25413

n = 50 9.97 2155 315807

n = 60 37.9 21140 NA

n = 70 112 149925 NA

Average maximum # states (x1000)

OLD

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 2.87

n = 40 0.00 1.28 30.4

n = 50 0.00 4.87 210

n = 60 0.00 20.2 1693

n = 70 0.00 79.1 11006

NEW

Average maximum # states (x1000)

On average, we reduce memory 
requirements by a factor of 364!



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60



SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60



SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60

We are even able to solve 196 instances of the 
J90 dataset and 3 instances of the J120 dataset



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 180 and a 

reduction of memory requirements with factor 364!

Contributions



We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 180 and a 

reduction of memory requirements with factor 364!

Contributions

We can use our model to find the optimal 
expected NPV for projects with up to 120 

activities that have general activity durations!



We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 180 and a 

reduction of memory requirements with factor 364!

Contributions

We can use our model to find the optimal 
expected NPV for projects with up to 120 

activities that have general activity durations!

Our model can also be used to study the SRCPSP 
where the execution of activities is allowed to be 

interrupted (i.e., we can assess the value of 
splitting activities).




