

A comparison of methods to evaluate the probability of excessive waiting in the $M(t) / G / s(t)+G$ queue

Stefan Creemers (IESEG \& KU Leuven)
Mieke Defraeye (KU Leuven) Inneke Van Nieuwenhuyse (KU Leuven)

KATHOLIEKE UNIVERSITEIT
LIUVEN

Problem Setting

- Service systems with:
- Time-varying demand for service/supply of service
- Abandonments
- Exhaustive service discipline
- General service \& abandonment distributions

Problem Setting

- Service systems with:
- Time-varying demand for service/supply of service
- Abandonments
- Exhaustive service discipline
- General service \& abandonment distributions
- $M(t) / G / s(t)+G$ queue

Problem Setting

- Service systems with:
- Time-varying demand for service/supply of service
- Abandonments
- Exhaustive service discipline
- General service \& abandonment distributions
- $M(t) / G / s(t)+G$ queue
- Examples: Emergency departpments, call centers, fastfood restaurants, supermarkets, retail stores, banks...

Problem Setting

Problem Setting

ARRIVAL RATE $\lambda(t)$

Time of day

Problem Setting

ARRIVAL RATE $\lambda(t)$

Time of day

Problem Setting

ARRIVAL RATE $\lambda(t)$

Time of day

SERVICE RATE $s(t) \mu$

Time of day

ABANDONMENT

Problem Setting

ARRIVAL RATE $\lambda(t)$

Time of day

SERVICE RATE $s(t) \mu$

Time of day

ABANDONMENT RATE θ ABANDONMENT

Problem Setting

ARRIVAL RATE $\lambda(t)$

Time of day

SERVICE RATE $s(t) \mu$

Time of day

$M(t) / G / s(t)+G$

Research Question

How can we measure the probability of excessive waiting, given this time-varying demand for service/supply of service?

Research Question

How can we measure the probability of excessive waiting, given this time-varying demand for service/supply of service?

Research Question

How can we measure the probability of excessive waiting, given this time-varying demand for service/supply of service?

Research Question

How can we measure the probability of excessive waiting, given this time-varying demand for service/supply of service?

Research Question

How can we measure the probability of excessive waiting, given this time-varying demand for service/supply of service?

Research Question

For every instant in time t, we need to compute the waiting time distribution in order to obtain $\operatorname{Pr}($ WAIT $>\tau)$

Methodology

- Comparison of three methods that allow to assess the probability of excessive waiting:
- Simulation
- MOL (Modified Offered Load)
- G-RAND (General Randomization)
- We compare these methods based on accuracy and CPU-time

Methodology

Simulation

- Virtual waiting times (i.e., we insert a dummy customer in the model and observe how long it would take before he/she would receive service).

- Number of simulation replications: 250, 500, 1000, 2000, 4000, 8000

Methodology MOL (Modified Offered Load)

- At every instant in time time t we solve a stationary $M / G / s+G$ system using a modified arrival rate $\lambda_{\text {MоL }}(t)$

- See for instance Jagerman (1975), Jennings et al. (1996), etc.

Methodology MOL (Modified Offered Load)

- The modified arrival rate is computed as follows:

$$
\begin{aligned}
\lambda_{\text {MoL }}(t) & \equiv m_{\infty}(t) \mu, \\
\text { where } m_{\infty}(t) & =\int_{-\infty}^{t}[1-G(t-u)] \lambda(u) \mathrm{d} u .
\end{aligned}
$$

Methodology MOL (Modified Offered Load)

- The modified arrival rate is computed as follows:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\lambda_{\mathrm{MOL}}(t) \\
\text { where } m_{\infty}(t) \\
\text { wo } m_{-\infty}(t) \mu \\
\text { Modified } \\
\text { Offered Load }
\end{array}
\end{aligned}
$$

Methodology MOL (Modified Offered Load)

- The modified arrival rate is computed as follows:

Methodology MOL (Modified Offered Load)

- The modified arrival rate is computed as follows:

Methodology MOL (Modified Offered Load)

- The modified arrival rate is computed as follows:

Methodology MOL (Modified Offered Load)

- The modified arrival rate is computed as follows:

- In order to solve the stationary $M / G / s+G$, we adopt two approaches:
- We simulate the $M / G / s+G$ queue.
- We use the approximation of Whitt (1995). Note that Whitt (1995) approximates the $M / G / s+G$ queue by means of an $M / M / s+M$ queue.

Methodology G-RAND (General Randomization)

- Approximation of the $G(t) / G(t) / s(t)+G(t)$ queue
- Randomization/Uniformization method => observes the state of the system at discrete moments in time
- The more often you observe the system, the more accurate the method
- All-around method that allows the stationary as well as the transient analysis of a wide range of performance measures
- Uses Phase-Type distributions to approximate the general arrival, service, and abandonment processes
- In our experiment, we use simple PH distributions that match the first two moments.
- Time in between observations: $0.125,0.25,0.5,1,2$ minutes

Experiment Setup

Experiment Setup

ARRIVAL RATE $\lambda(t)$

Time of day

Experiment Setup

ARRIVAL RATE $\lambda(t)$

Time of day

Experiment Setup

Experiment Setup

Results in 162 test instances

(NOTE: WE ASSUME LOGNORMAL SERVICE \& ABANDONMENT DISTRIBUTIONS)

Performance Evaluation

- The methods are compared based on accuracy \& CPU time
- All tests are run on a Intel 173.4 GHz with 8 GB RAM
- Accuracy is expressed as the mean absolute error:

$$
(1 / \mathrm{T}) * \Sigma\left|\operatorname{Pr}(\mathrm{WAIT}>\tau)_{\text {TRUE }}-\operatorname{Pr}(\mathrm{WAIT}>\tau)_{\mathrm{EST}}\right|
$$

Results

SCV1 TAU10

Results

SCV1 TAU10

Results

SCV1 TAU10

Results

SCV1 TAU10

Results

SCV1 TAU10

Results

SCV1 TAU10

Results

SCV1 TAU10

Conclusion:

1. MOL is outperformed by simulation and by G-RAND
2. Simulation and G-RAND are comparable

Results

SCV0.5 TAU10

Results

SCV0.5 TAU10

Results

SCV2 TAU10

Results

SCV2 TAU10

Conclusions

- Results are similar for other values of τ
- Conclusions:
- MOL is outperformed by simulation as well as by G-RAND
- In general simulation outperforms G-RAND
- Note however:
- The accuracy of G-RAND can be improved by adopting more precise moment-matching procedures (in our experiment, we only match the first two moments of the lognormal distributions).
- Computing the waiting time distribution is a CPU-intensive process as it requires the analysis of a death process. Other KPI's (e.g., queue size, abandonment probability) can be calculated much faster.

