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Problem Setting

• Service systems with:

– Time-varying demand for service/supply of service

– Abandonments

– Exhaustive service discipline

– General service & abandonment distributions

• M(t)/G/s(t)+G queue

• Examples: Emergency departpments, call centers, 
fastfood restaurants, supermarkets, retail stores, 
banks…
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Research Question

How can we measure the probability of 
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Research Question

How can we measure the probability of 
excessive waiting, given this time-varying

demand for service/supply of service?

TARGETa

Probability of waiting 
longer than t at time t

For every instant in time t, we need to 
compute the waiting time distribution in 

order to obtain Pr(WAIT>t)



Methodology

• Comparison of three methods that allow to 
assess the probability of excessive waiting:

– Simulation

– MOL (Modified Offered Load)

– G-RAND (General Randomization)

• We compare these methods based on 
accuracy and CPU-time



Methodology
Simulation

• Virtual waiting times (i.e., we insert a dummy 
customer in the model and observe how long it
would take before he/she would receive service).

• Number of simulation replications: 250, 500, 1000, 
2000, 4000, 8000
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Methodology
MOL (Modified Offered Load)

• At every instant in time time t we solve a stationary
M/G/s+G system using a modified arrival rate lMOL(t)

• See for instance Jagerman (1975), Jennings et al. 
(1996), etc.
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Methodology
MOL (Modified Offered Load)

• The modified arrival rate is computed as follows:

• In order to solve the stationary M/G/s+G, we adopt two
approaches:
– We simulate the M/G/s+G queue.

– We use the approximation of Whitt (1995). Note that Whitt (1995) 
approximates the M/G/s+G queue by means of an M/M/s+M queue.
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Methodology
G-RAND (General Randomization)

• Approximation of the G(t)/G(t)/s(t)+G(t) queue

• Randomization/Uniformization method => observes the state 
of the system at discrete moments in time

• The more often you observe the system, the more accurate 
the method

• All-around method that allows the stationary as well as the 
transient analysis of a wide range of performance measures

• Uses Phase-Type distributions to approximate the general
arrival, service, and abandonment processes

• In our experiment, we use simple PH distributions that match 
the first two moments.

• Time in between observations: 0.125, 0.25, 0.5, 1, 2 minutes
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Results in 162 test instances
(NOTE: WE ASSUME LOGNORMAL SERVICE & ABANDONMENT DISTRIBUTIONS)



Performance Evaluation

• The methods are compared based on accuracy & 
CPU time

• All tests are run on a Intel I7 3.4 GHz with 8 GB RAM

• Accuracy is expressed as the mean absolute error:

(1/T) * S|Pr(WAIT>t)TRUE - Pr(WAIT>t)EST|
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G-RAND: we observe the 
system every 0.125, 0.25, 

0.5, 1, and 2 minutes
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Simulation: we use 250, 
500, 1000, 2000, 4000 and 

8000 replications.
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Conclusion:
1. MOL is outperformed by simulation and by G-RAND

2. Simulation and G-RAND are comparable
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Conclusions

• Results are similar for other values of t
• Conclusions:

– MOL is outperformed by simulation as well as by G-RAND
– In general simulation outperforms G-RAND

• Note however:
– The accuracy of G-RAND can be improved by adopting 

more precise moment-matching procedures (in our 
experiment, we only match the first two moments of the 
lognormal distributions).

– Computing the waiting time distribution is a CPU-intensive 
process as it requires the analysis of a death process. 
Other KPI’s (e.g., queue size, abandonment probability) 
can be calculated much faster.


