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* Service systems with:
— Time-varying demand for service/supply of service
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— Exhaustive service discipline
— General service & abandonment distributions

* M(t)/G/s(t)+G queue

 Examples: Emergency departpments, call centers,
fastfood restaurants, supermarkets, retail stores,
banks...



Problem Setting




Problem Setting

ARRIVAL RATE A(t)

/TN

Time of day

( ARRIVAL )—>

QUEUE

SERVICE
PROCESS

SERVICE
COMPLETION

)

(
» ABANDONMENT
N

)




Problem Setting

ARRIVAL RATE A(t)

/TN

Time of day

( ARRIVAL )—>

QUEUE

SERVICE
PROCESS

SERVICE
COMPLETION

)

(
» ABANDONMENT
N

)




Problem Setting

ARRIVAL RATE A(t) SERVICE RATE s(t)u
Time of day Time of day
' SERVICE ' SERVICE
( ARRIVAL PROCESS COMPLETION )
QUEUE

(poneonen)
» ABANDONMENT
N




Problem Setting

ARRIVAL RATE A(t) SERVICE RATE s(t)u
Time of day Time of day
' SERVICE ' SERVICE
( ARRIVAL PROCESS COMPLETION )
QUEUE

ABANDONMENT RATE 6

(poneonen)
» ABANDONMENT
N




Problem Setting

ARRIVAL RATE A(t) SERVICE RATE s(t)u
Time of day Time of day
' SERVICE ' SERVICE
( ARRIVAL PROCESS COMPLETION )
QUEUE
ABANDONMENT RATE &
ABANDONMENT

M(t)/G/s(t)+G




Research Question

How can we measure the probability of
excessive waiting, given this time-varying
demand for service/supply of service?




Research Question

How can we measure the probability of
excessive waiting, given this time-varying
demand for service/supply of service?

0,15

0,10 -

} TARGET o

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

0,05 fsesssssmsssssssssmssnsssnnsnnsnsnnnna s snnmanmammsmssmmmsEmsmssmEssEmsmsnnuun

0,00




Research Question

How can we measure the probability of
excessive waiting, given this time-varying
demand for service/supply of service?

0,15

0,10 -

} TARGET a
0,05 {sPagrmsmssssasnnsmnnnnnnnnafiandadinnnninanannnsn s annnannannna e n Mannaas

0,00 T T T T T T T T T T T oge e ®
0 2 4 6 s 10 12 14 16 18 20 22 o4 :l-' Probability of wa.|t|ng
Hour of day longer than T at time t




Research Question

How can we measure the probability of
excessive waiting, given this time-varying
demand for service/supply of service?

0,15

0,10 -

} TARGET o
0,05 -

OIOO T T T T T T T T T T T oge e ®
o 2 / \4 6 8 10 12 14 16 18 20 22 24 :i Probability of waiting
Hour of day longer than T attime t

®

Pr{WAIT>T)<0




Research Question
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demand for service/supply of service?

0,15

0,10 -

} TARGET o
0,05 = A

0,00 T T T T T T T T T T oge e ®
0 5 [ \ i 6 8 10 1 14 16 18 / |_22 - Probability of wa.|t|ng
longer than T at time t

Hour of day

D

Pr{WAIT>T)<0 Pr{(WAIT>T)>0




Research Question

For every instant in time t, we need to
compute the waiting time distribution in
order to obtain Pr(WAIT>T1)




Methodology

 Comparison of three methods that allow to
assess the probability of excessive waiting:

— Simulation
— MOL (Modified Offered Load)
— G-RAND (General Randomization)

 We compare these methods based on
accuracy and CPU-time



Methodology

Simulation

e Virtual waiting times (i.e., we insert a dummy
customer in the model and observe how long it
would take before he/she would receive service).

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

 Number of simulation replications: 250, 500, 1000,
2000, 4000, 8000



Methodology
MOL (Modified Offered Load)

e At every instant in time time t we solve a stationary
M/G/s+G system using a modified arrival rate A,,o, (t)

1 1 1 1 1 1 =

stationary| |stationary| |stationary| |stationary| |stationary| |stationary| |stationary| [|stationary
M/G/s+G M/G/s+G M/G/s+G M/G/s+G M/G/s+G M/G/s+G M/G/s+G M/G/s+G
system system system system system system system system

e See for instance Jagerman (1975), Jennings et al.
(1996), etc.
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Methodology

MOL (Modified Offered Load)

 The modified arrival rate is computed as follows:

AM{I}L (-[L) = M (IL }lu /

where m (1)

7

Modified
Offered Load

= /t 11— G(t—u)|A(u)du.

Original
arrival rate

~ 7

Service CDF

Individual
service rate

* |n order to solve the stationary M/G/s+G, we adopt two

approaches:

— We simulate the M/G/s+G queue.

— We use the approximation of Whitt (1995). Note that Whitt (1995)
approximates the M/G/s+G queue by means of an M/M/s+M queue.




Methodology
G-RAND (General Randomization)

Approximation of the G(t)/G(t)/s(t)+G(t) queue

Randomization/Uniformization method => observes the state
of the system at discrete moments in time

The more often you observe the system, the more accurate
the method

All-around method that allows the stationary as well as the
transient analysis of a wide range of performance measures

Uses Phase-Type distributions to approximate the general
arrival, service, and abandonment processes

In our experiment, we use simple PH distributions that match
the first two moments.

Time in between observations: 0.125, 0.25, 0.5, 1, 2 minutes
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Experiment Setup

Results in 162 test instances

(NOTE: WE ASSUME LOGNORMAL SERVICE & ABANDONMENT DISTRIBUTIONS)




Performance Evaluation

* The methods are compared based on accuracy &
CPU time

e All tests are run on a Intel 17 3.4 GHz with 8 GB RAM
* Accuracy is expressed as the mean absolute error:

(1/T) * Z|Pr(WAIT>T)1z ¢ - Pr(WAIT>T) ;|
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Results

Conclusion:
1. MOL is outperformed by simulation and by G-RAND
2. Simulation and G-RAND are comparable
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Conclusions

e Results are similar for other values of ©

* Conclusions:
— MOL is outperformed by simulation as well as by G-RAND
— In general simulation outperforms G-RAND

* Note however:

— The accuracy of G-RAND can be improved by adopting
more precise moment-matching procedures (in our
experiment, we only match the first two moments of the

lognormal distributions).

— Computing the waiting time distribution is a CPU-intensive
process as it requires the analysis of a death process.
Other KPI's (e.g., queue size, abandonment probability)
can be calculated much faster.



