Patient Flow Times in the Presence of Outages A Case Study in a Belgian Hospital

Stefan Creemers and Marc Lambrecht

Research Center for Operations Management

Katholieke Universiteit Leuven

July 10, 2007

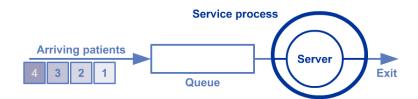
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Problem setting

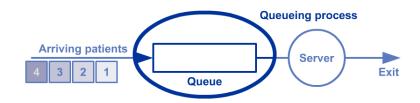
- Problem setting: healthcare and other services
- Measures of interest:
 - Patient waiting time
- Methodology: queueing theory
 - Focus on manufacturing
 - Healthcare modeling requires distinct approach

伺 ト く ヨ ト く ヨ ト

A basic queueing system


- 4 同 6 4 日 6 4 日 6

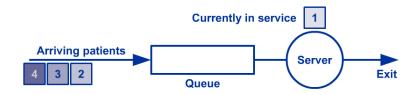
A basic queueing system


- 4 同 6 4 日 6 4 日 6

A basic queueing system

イロト イポト イヨト イヨト

A basic queueing system


- 4 同 6 4 日 6 4 日 6

A basic queueing system

- 4 同 6 4 日 6 4 日 6

A basic queueing system

イロト イポト イヨト イヨト

A basic queueing system

イロト イポト イヨト イヨト

A basic queueing system

イロト イポト イヨト イヨト

A basic queueing system

- 4 同 6 4 日 6 4 日 6

Problems in healthcare modeling

- Queue discipline
- Time varying demand
- Waiting creates additional work
- Service outages (absences and interrupts)
- Service epochs
- Reentry at previous workstations
- Probabilistic routing of patients

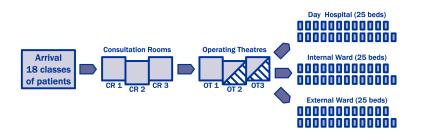
4 3 b

Problems in healthcare modeling

- Queue discipline
- Time varying demand
- Waiting creates additional work
- Service outages (absences and interrupts)
- Service epochs
- Reentry at previous workstations
- Probabilistic routing of patients

A 3 b

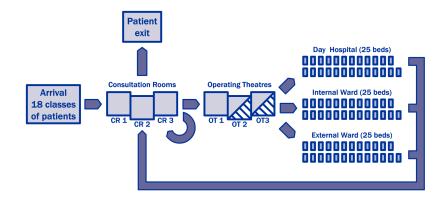
Outline Nonpreemptive outages Preemptive outages Service epochs


Outline

- Problem setting: orthopaedic department of the Middelheim hospital in Antwerp
- Problem: excessive waiting times and congested waiting list
- Objective: analysis of impact of service outages through capacity and variability analysis
- Methodology: queueing models of the orthopaedic department
- Contribution: development of new expressions to assess the impact of service outages

イロト イポト イヨト イヨト

Outline Nonpreemptive outages Preemptive outages Service epochs


Capacity structure

(a)


Outline Nonpreemptive outages Preemptive outages Service epochs

Patient flow

Outline Nonpreemptive outages Preemptive outages Service epochs

Queueing network

イロン 不同 とくほう イロン

Outline Nonpreemptive outages Preemptive outages Service epochs

Service outages

Different types of outages of the service process:

- Nonpreemptive outages (absences)
- Preemptive outages (interrupts)
- Service epochs (server unavailability)

We formulate queueing models taking these outages into account

- 4 同 6 4 日 6 4 日 6

Outline Nonpreemptive outages Preemptive outages Service epochs

Nonpreemptive outages

- Interruption of the service process prior to treatment of a patient
- Examples:
 - Absence of medical staff at the beginning of a working shift
 - Setup time of medical facilities (e.g. cleaning, preparation)
- Exact results have been obtained in Hopp and Spearman (2000) under the assumption of a fixed number of patients in between two subsequent outages

< ロ > < 同 > < 三 > < 三 > 、

Outline Nonpreemptive outages Preemptive outages Service epochs

Nonpreemptive outages: example

Patient 1 Patient 2 Patient 3	Patient 4	Patient 5	Patient 6
-------------------------------	-----------	-----------	-----------

< ロ > < 同 > < 三 > < 三 > :

Outline Nonpreemptive outages Preemptive outages Service epochs

Nonpreemptive outages: example

Patient 1 Patient 2 Patient 3	Patient 4	Patient 5	Patient 6
-------------------------------	-----------	-----------	-----------

・ロン ・四 と ・ ヨ と ・ ヨ と ・

Outline Nonpreemptive outages **Preemptive outages** Service epochs

Preemptive outages

- Interruption of the service process during service itself
- Examples:
 - Emergencies
 - Phone calls, administration, ...
- Exact results have been obtained in Hopp and Spearman (2000) under the assumption of:
 - Exponential time between interrupts
 - Interrupts only occur during the service process itself

Outline Nonpreemptive outages Preemptive outages Service epochs

Preemptive outages

• Example:

Patient 1 Patient 2 Patient 3	Patient 4	Patient 5	Patient 6
-------------------------------	-----------	-----------	-----------

< ロ > < 同 > < 三 > < 三 > :

æ

Outline Nonpreemptive outages **Preemptive outages** Service epochs

Preemptive outages

• Example:

Patient 1 Patient 2 Patient 3		Patient 4	Patient 5	Patient 6
-------------------------------	--	-----------	-----------	-----------

(a)

Outline Nonpreemptive outages Preemptive outages Service epochs

Preemptive outages

• Example:

Patient 1 Patier	2 Patient 3			Patient 4		Patient 5	Patient 6
------------------	-------------	--	--	-----------	--	-----------	-----------

(a)

Outline Nonpreemptive outages Preemptive outages Service epochs

Preemptive outages

• Example:

Patient 1 Patient 2 Patient 3		Patient 4	Patient 5	Patient 6
-------------------------------	--	-----------	-----------	-----------

(a)

Outline Nonpreemptive outages **Preemptive outages** Service epochs

Preemptive outages

• Example:

Patient 1 Patient 2 Patient 3			Patient 4		Patient 5	Patient 6
-------------------------------	--	--	-----------	--	-----------	-----------

• Exact formulation of mean and variance of service times including preemptive outages:

$$\frac{1}{\mu} = \frac{1}{\mu_0} \left(\frac{MTTI}{MTTI + MTTR} \right)$$

$$\sigma^{2} = \sigma_{0}^{2} \left(\frac{MTTI + MTTR}{MTTI} \right)^{2} + \frac{1}{\mu_{0}} \left(\frac{\sigma_{r}^{2} + MTTR^{2}}{MTTI} \right)$$

Preemptive outages: generalization

- In healthcare, services may be interrupted during the resolving of a previous interrupt
- Examples:
 - A doctor receiving a phone call during an emergency
 - A doctor who is interrupted by a nurse during a phone call
- We generalize the result of Hopp and Spearman (2000) to include multiple order interrupts

(日) (同) (日) (日) (日)

Outline Nonpreemptive outages Preemptive outages Service epochs

Preemptive outages: generalization

• Example:

Outline Nonpreemptive outages Preemptive outages Service epochs

Preemptive outages: generalization

• Example:

Patient 1	Patient 2	Patient 3			Patient 4	Patient 5	Patient 6
-----------	-----------	-----------	--	--	-----------	-----------	-----------

Outline Nonpreemptive outages Preemptive outages Service epochs

Preemptive outages: generalization

• Example:

Patient 1 Patient 2 Patient 3				Patient 4	Patient 5	Patient 6
-------------------------------	--	--	--	-----------	-----------	-----------

Outline Nonpreemptive outages **Preemptive outages** Service epochs

Preemptive outages: generalization

• Example:

Patient 1 Patient 2 Patient 3				Patient 4	Patient 5	Patient 6
-------------------------------	--	--	--	-----------	-----------	-----------

• Exact formulation of mean and variance of service times including preemptive outages:

$$\frac{1}{\mu} = \frac{1}{\mu_0} \left(\frac{MTTI}{MTTI - MTTR} \right)$$

$$\sigma^{2} = \frac{MTTI^{2}\sigma_{0}^{2} + \frac{1}{\mu_{0}} \left(MTTI - MTTR\right) \left(\sigma_{r}^{2} + MTTR^{2}\right)}{\left(MTTI - MTTR\right)^{2}}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Service epochs

- (Healthcare) services take place during predefined time intervals
- Problem: how to combine surgery, consultation and recovery into one model, while all operate on different time scales:
 - Consultation and surgery take place at weekdays during specific hours
 - Recovery is a continuous process
- Solution: rescaling of the service process using an availability concept

< ロ > < 同 > < 三 > < 三 > 、

Introduction Outline Problem description Methodology Preemptive outages Conclusion Service epochs

Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Friday from 2 PM until 6 PM
- Availability:

$$A = \frac{6}{168} = \frac{1}{28}$$

(日) (同) (三) (三)

Introduction Outline Problem description Methodology Preemptive outages Conclusion Service epochs

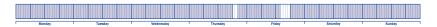
Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Mean and variance of the rescaled service times:

$$\frac{1}{\mu} = \frac{1}{A\mu_0}$$
$$\sigma^2 = \frac{\sigma_0^2}{A^2}$$

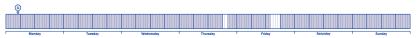
(日) (同) (三) (三)

Introduction Outline Problem description Methodology Preemptive outages Conclusion Service epochs

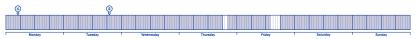

Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

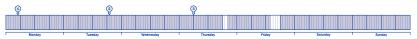
(日) (同) (日) (日) (日)


Availability

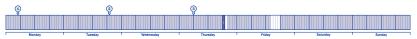
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

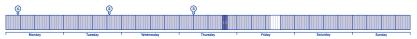
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

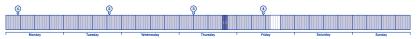
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

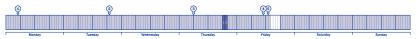
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

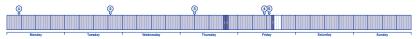
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

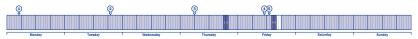
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

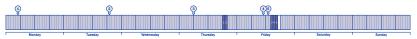
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

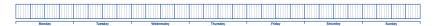
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

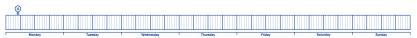
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

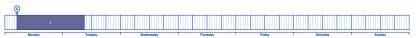
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

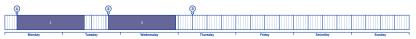
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

Availability

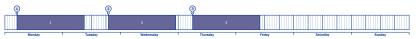
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

Availability

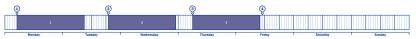
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

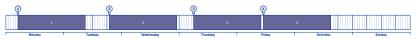
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

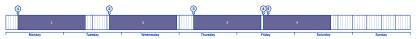
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

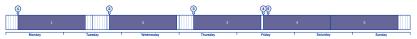
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour


Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

Availability

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

Methodology Simulation

Methodology

In order to assess patient waiting times at the orthopaedic department, we used a variety of queueing models:

- Parametric decomposition approach
 - Kingman equation: closed form
 - Whitt's procedure: algorithm
- Brownian queueing model: heavy traffic setting
- Simulation was used as a validation tool

These models were used to test a variety of scenarios, assessing different levels of impact of service outages (absences and interrupts)

- 4 同 6 4 日 6 4 日 6

Simulation model

Quick facts:

- 60 modules, 18 classes of patients, different phases of treatment
- Single run simulation for each of the scenarios tested
- Number of patients observed each run: 285,000,000 at surgery, 1,150,000,000 at consultation
- Simulation runtime: 86,000 years
- Resulting statistical precision: standard error < 0.00001

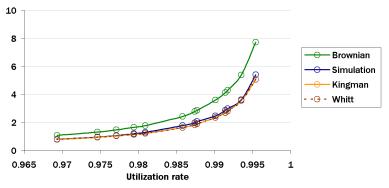
Introduction Problem description Methodology Conclusion

Results Conclusions Questions

Results: base model

i	1	2	3	4	5
Analytical models					
$\frac{1}{\mu_i}$	0.01257	0.06329	0.79710	5.03237	8.09661
Ρi	0.99543	0.97854	0.14776	0.75701	0.20396
$C_{s_i}^2$	0.65079	0.60612	14.0786	1.98721	23.4125
E [W _{Kingman}]	5.05894	3.95430	0.79710	5.24027	8.09687
E [W _{Whitt}]	5.05911	3.95298	0.79710	5.20325	8.09664
E [W _{Brownian}]	7.72261	5.41723	0.27924	1.19658	5.00118
i	1	2	3	4	5
Simulation					
$\frac{1}{\mu_i}$	0.01257	0.06329	0.79711	5.03233	8.10131
ρ	0.99541	0.97858	0.14775	0.75701	0.20414
$C_{s_i}^2$	0.65796	0.60589	14.0969	1.98918	23.9050
E [W _{Simulation}]	5.40098	3.46204	0.79711	5.11928	8.10131

INFORMS Annual Meeting Patient Flow Times in the Presence of Outages


<ロ> <同> <同> <同> < 同> < 同> < 同> <

æ

Introduction Problem description Methodology Conclusion **Results** Conclusions Questions

Results: scenarios

Patient waiting time (days)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

conclusions

- When assessing waiting time at complex hospital systems, parametric decomposition approaches work best
- Hospital decision makers should avoid the high utilization trap
- Decreasing the size, amount and variability of service outages is able to yield significant improvement

Contributions:

- Development of new expressions to model service outages
- Comparison of different modeling techniques

・ロト ・同ト ・ヨト ・ヨト

Introduction Problem description Methodology Conclusion Results Conclusions Questions

Time for questions

(同) くほり くほり

æ