
Markovian PERT networks:
A new CTMC and benchmark

results

Stefan Creemers
(October 22, 2017)

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

For a project with n activities there are up to
3n states!

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {0,0,0,2,2,2}

1

2

3

4

5

6

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

New CTMC

• We are the first to introduce a new CTMC since the
CTMC of Kulkarni & Adlakha that was published in
1986

• In this new CTMC, states are defined by the set of
finished activities

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows
activities to be preempted

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

Example: State space

1

2

3

4

5

6

In this state, it is optimal if
activities 2 & 3 are ongoing

Example: State space

1

2

3

4

5

6 1

2

3

4

5

6

In this state, it is optimal if
activities 2 & 3 are ongoing

Activity 2 finishes we end
up in state q = {1,1,0,0,0,0}

Example: State space

1

2

3

4

5

6

Activity 2 finishes we end
up in state q = {1,1,0,0,0,0}

Example: State space

1

2

3

4

5

6

Activity 2 finishes we end
up in state q = {1,1,0,0,0,0}

1

2

3

4

5

6

Here, it is optimal if activity 4 is
ongoing activity 3 is preempted!

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Creemers (2015)

• Minimizing the expected makespan of a
project with stochastic activity durations
under resource constraints, Journal of
Scheduling, 2015

• Current state-of-the-art for solving the
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

well-known PSPLIB data sets (J30, J60,
J90, & J120)

• Bottleneck = memory requirements

SRCPSP
2015 (JOS) Instances Solved

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) CPU Times

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) VS new CTMC

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 0.02

J60 81.6

J90 NA

J120 NA

NEW CTMC

Avg CPU time (s) for same inst.

SRCPSP
2015 (JOS) VS new CTMC

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 0.02

J60 81.6

J90 NA

J120 NA

NEW CTMC

Avg CPU time (s) for same inst.

On average, we improve computation
times by a factor of 19!

SRCPSP
2015 (JOS) Instances Solved

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) Memory Requirements

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) VS new CTMC

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 1.99

J60 508

J90 NA

J120 NA

NEW CTMC

Avg max # states (x1K) for = inst.

SRCPSP
2015 (JOS) VS new CTMC

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 1.99

J60 508

J90 NA

J120 NA

NEW CTMC

Avg max # states (x1K) for = inst.

On average, we reduce memory requirements
by a factor of 733!

SRCPSP
New CTMC Instances Solved

J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)

SRCPSP
New CTMC Instances Solved

J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)

We are the first to solve instances of the
J90 and J120 data sets to optimality!

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

SNPV
2010 (ORL) Instances Solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 7

n = 50 0 1 82

n = 60 0 6 NA

n = 70 0 34 NA

NEW CTMC

Average CPU time (s) for same instances

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 7

n = 50 0 1 82

n = 60 0 6 NA

n = 70 0 34 NA

NEW CTMC

Average CPU time (s) for same instances

On average, we improve computation
times by a factor of 492!

SNPV
2010 (ORL) Memory Requirements

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) Memory Requirements

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

NEW CTMC

Avg max # states (x1000) for same inst.

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

NEW CTMC

Avg max # states (x1000) for same inst.

On average, we reduce memory requirements
by a factor of 403!

SNPV
New CTMC Instances Solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

SNPV
New CTMC CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

Average CPU time (s)

NEW CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

SNPV
New CTMC CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

Average CPU time (s)

NEW CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

CPU times have become the new
bottleneck

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

