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Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT 
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three 
sets: idle, ongoing, & finished activities

For a project with n activities there are up to 
3n states!



Example: State space

• An activity j is either:
– Idle (qj=0) 
– Ongoing (qj=1) 
– Finished (qj=2) 

• The state of the system is 
represented by a vector:

q = {q1, q2, … qn} 
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}
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New CTMC

• We are the first to introduce a new CTMC since the 
CTMC of Kulkarni & Adlakha that was published in 
1986

• In this new CTMC, states are defined by the set of 
finished activities 

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE 
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows 
activities to be preempted
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Example: State space

• An activity j is either:

– Idle (qj=0) 

– Finished (qj=1) 

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are 
ongoing? 2? 3? 2 and 3?

• Preemption is possible
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Example: State space
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In this state, it is optimal if 
activities 2 & 3 are ongoing
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In this state, it is optimal if 
activities 2 & 3 are ongoing

Activity 2 finishes we end 
up in state q = {1,1,0,0,0,0}
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Activity 2 finishes we end 
up in state q = {1,1,0,0,0,0}



Example: State space
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Activity 2 finishes we end 
up in state q = {1,1,0,0,0,0}
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Here, it is optimal if activity 4 is 
ongoing activity 3 is preempted!
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Creemers (2015)

• Minimizing the expected makespan of a 
project with stochastic activity durations 
under resource constraints, Journal of 
Scheduling, 2015

• Current state-of-the-art for solving the 
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on 

well-known PSPLIB data sets (J30, J60, 
J90, & J120)

• Bottleneck = memory requirements



SRCPSP
2015 (JOS) Instances Solved

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)



SRCPSP
2015 (JOS) CPU Times

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)



SRCPSP
2015 (JOS) VS new CTMC

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 0.02

J60 81.6

J90 NA

J120 NA

NEW CTMC

Avg CPU time (s) for same inst.
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On average, we improve computation 
times by a factor of 19!
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SRCPSP
2015 (JOS) Memory Requirements

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 480
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J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)
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2015 (JOS) VS new CTMC
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J60 374499
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J120 NA
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J60 508
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J120 NA

NEW CTMC

Avg max # states (x1K) for = inst.
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J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 1.99

J60 508

J90 NA

J120 NA

NEW CTMC

Avg max # states (x1K) for = inst.

On average, we reduce memory requirements 
by a factor of 733!



SRCPSP
New CTMC Instances Solved

J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)



SRCPSP
New CTMC Instances Solved

J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)

We are the first to solve instances of the 
J90 and J120 data sets to optimality!
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Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks 
to maximize the net present value, 
Operations Research Letters, 2010

• Current state-of-the-art for solving the 
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on 

dataset with different n and Order 
Strength (OS)

• Bottleneck = memory requirements



SNPV
2010 (ORL) Instances Solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC



SNPV
2010 (ORL) CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC



SNPV
2010 (ORL) VS new CTMC
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n = 60 0 6 NA

n = 70 0 34 NA

NEW CTMC

Average CPU time (s) for same instances
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n = 70 0 34 NA

NEW CTMC
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On average, we improve computation 
times by a factor of 492!



SNPV
2010 (ORL) Memory Requirements

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC



SNPV
2010 (ORL) Memory Requirements

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0
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Avg max # states (x1000) for same inst.



SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020
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OS = 0.8 OS = 0.6 OS = 0.4
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n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

NEW CTMC

Avg max # states (x1000) for same inst.

On average, we reduce memory requirements 
by a factor of 403!



SNPV
New CTMC Instances Solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30
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NEW CTMC

Instances solved (out of 30)



SNPV
New CTMC CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

Average CPU time (s)

NEW CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30
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Instances solved (out of 30)



SNPV
New CTMC CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

Average CPU time (s)

NEW CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

CPU times have become the new 
bottleneck



SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start 
that activity as early as possible

• If at time t activity i is preempted, the remainder 
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the 
cost has already been incurred at the start of 
activity i)

It is optimal to start the remainder of activity i at 
time t

It is optimal not to preempt activity i
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Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when 

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the 

SNPV
• Bottleneck shifted from memory requirements to CPU 

times
• Only “drawback” is that the new CTMC allows activities 

to be preempted
• We prove that there is no preemption when solving the 

SNPV




