Moments and Distribution of the NPV of a Project

Stefan Creemers
(October 25, 2017)

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Introduction

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation
- We develop exact, closed-form expressions for the moments of project NPV \& develop an accurate approximation of the NPV distribution itself

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage - Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a single cash flow obtained after a single stage

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}

NPV of a single cash flow obtained after a single stage

$f_{w}(t)$

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred

NPV of a single cash flow obtained after a single stage

$v_{w}=c_{w} \int_{0}^{\infty} f_{w}(t) e^{-r t} d t$

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred
- $r=$ discount rate

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred
- $r=$ discount rate
- $M_{f_{w}(t)}(-r)=$ moment generating function of $f_{w}(t)$ about $-r$

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred
- $r=$ discount rate
- $M_{f_{w}(t)}(-r)=$ moment generating function of $f_{w}(t)$ about $-r$
- $\phi_{w}(r)=$ discount factor for stage w

NPV of a single cash flow obtained after a single stage

NPV of a single cash flow obtained after a single stage

- Using discount factor $\phi_{w}(r)$, we can obtain the moments of the NPV:

```
- \(\mu_{w}=c_{w} \phi_{w}(r)\)
- \(\sigma_{w}^{2}=c_{w}^{2}\left(\phi_{w}(2 r)-\phi_{w}^{2}(r)\right)\)
- \(\gamma_{w}=c_{w}^{3}\left(\phi_{w}(3 r)-3 \phi_{w}(2 r) \phi_{w}(r)+2 \phi_{w}^{3}(r)\right) \sigma_{w}^{-3}\)
\(-\theta_{w}=c_{w}^{4}\left(\phi_{w}(4 r)-4 \phi_{w}(3 r) \phi_{w}(r)+6 \phi_{w}(2 r) \phi_{w}^{2}(r)-3 \phi_{w}^{4}(r)\right) \sigma_{w}^{-4}\)
```


NPV of a single cash flow obtained after a single stage

$$
v_{w}=c_{w} \phi_{w}(r)
$$

- Using discount factor $\phi_{w}(r)$, we can obtain the moments of the NPV:

```
- \(\mu_{w}=c_{w} \phi_{w}(r)\)
- \(\sigma_{w}^{2}=c_{w}^{2}\left(\phi_{w}(2 r)-\phi_{w}^{2}(r)\right)\)
- \(\gamma_{w}=c_{w}^{3}\left(\phi_{w}(3 r)-3 \phi_{w}(2 r) \phi_{w}(r)+2 \phi_{w}^{3}(r)\right) \sigma_{w}^{-3}\)
\(-\theta_{w}=c_{w}^{4}\left(\phi_{w}(4 r)-4 \phi_{w}(3 r) \phi_{w}(r)+6 \phi_{w}(2 r) \phi_{w}^{2}(r)-3 \phi_{w}^{4}(r)\right) \sigma_{w}^{-4}\)
```

- The CDF \& PDF of the NPV of c_{w} are:
$-G_{w}(v)=1-F_{w}\left(\ln \left(\frac{c_{w}}{v}\right) r^{-1}\right)$
$-g_{w}(v)=\frac{f_{w}\left(\ln \left(\frac{c_{w}}{v}\right) r^{-1}\right)}{|r| v}$

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

$$
v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r)
$$

NPV of a single cash flow obtained after multiple stages

$$
v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r) \quad v_{w}=c_{w} \prod_{i=1}^{w} \phi_{i}(r)
$$

NPV of a single cash flow obtained after multiple stages

$$
\begin{aligned}
& \text { now }_{f_{1}(t)}^{\phi_{w}(r)} \text { stage } 1, \ldots\left(\begin{array}{c}
\phi_{w}(t) \\
w-1
\end{array} \phi_{w}(r)\right. \\
& v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r) \quad v_{w}=c_{w} \prod_{i=1}^{w} \phi_{i}(r) \quad v_{w}=c_{w} \phi_{1, w}(r)
\end{aligned}
$$

NPV of a single cash flow obtained after multiple stages

$$
\begin{aligned}
& \text { now }_{f_{1}(t)}^{\phi_{w}(r)} \text { stage } 14 \phi_{c_{w}}(r) \text { stage } f_{w}(t) \\
& v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r) \quad v_{w}=c_{w} \prod_{i=1}^{w} \phi_{i}(r) \quad v_{w}=c_{w} \phi_{1, w}(r)
\end{aligned}
$$

- We can obtain the moments of the NPV of cash flow c_{w} :

$$
\begin{aligned}
& -\mu_{w}=c_{w} \phi_{1, w}(r) \\
& -\sigma_{w}^{2}=c_{w}^{2}\left(\phi_{1, w}(2 r)-\phi_{1, w}^{2}(r)\right)
\end{aligned}
$$

$$
-\ldots
$$

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

- The mean and variance of the distribution of time until cash flow c_{w} is incurred is:

$$
\begin{aligned}
& -d_{1, w}=\sum_{i=1}^{w} d_{i} \\
& -s_{1, w}^{2}=\sum_{i=1}^{w} s_{i}^{2}
\end{aligned}
$$

NPV of a single cash flow obtained after multiple stages

- The mean and variance of the distribution of time until cash flow c_{w} is incurred is:
$-d_{1, w}=\sum_{i=1}^{w} d_{i}$
$-s_{1, w}^{2}=\sum_{i=1}^{w} s_{i}^{2}$
- If stage w is preceded by a sufficient number of stages, $f_{1, w}(t)$ is normally distributed with mean $d_{1, w}$ and variance $s_{1, w}^{2}$

NPV of a single cash flow obtained after multiple stages

- The mean and variance of the distribution of time until cash flow c_{W} is incurred is:
$-d_{1, w}=\sum_{i=1}^{w} d_{i}$
$-s_{1, w}^{2}=\sum_{i=1}^{w} s_{i}^{2}$
- If stage w is preceded by a sufficient number of stages, $f_{1, w}(t)$ is normally distributed with mean $d_{1, w}$ and variance $s_{1, w}^{2}$
- If $f_{1, w}(t)$ is normally distributed, the NPV of cash flow c_{w} is lognormally distributed!

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a serial project

NPV of a serial project

NPV of a serial project

NPV of a serial project

NPV of a serial project

NPV of a serial project

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

NPV of a serial project

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

	Mean μ
$\mu_{w}=c_{w} a_{1}$	

$\boldsymbol{\Sigma}_{c}(w, w)=\sigma_{w}^{2}=c_{w}^{2}\left(a_{2}-a^{2}\right)$
$\Sigma_{c}(w, x)=c_{w} c_{x} b_{1}\left(a_{2}-a^{2}\right)=c_{w}^{-1} c_{x} b_{1} \Sigma_{c}(w, w)$

Central coskewness matrix $\boldsymbol{\Gamma}_{\mathrm{c}}$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, w, w)=\gamma_{w} \sigma_{w}^{3}=c_{w}^{3}\left(a_{3}-3 a_{2} a_{1}+2 a^{3}\right)$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, w, x)=c_{w}^{-1} c_{x} b_{1} \boldsymbol{\Gamma}_{\mathrm{c}}(w, w, w)$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, x, x)=c_{w} c_{x}^{2}\left(a_{3} b_{2}-a_{2} a_{1}\left(2 b^{2}+b_{2}\right)+2 a^{3} b^{2}\right)$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, x, y)=c_{x}^{-1} c_{y} h_{1} \boldsymbol{\Gamma}_{\mathrm{c}}(w, x, x)$

Central cokurtosis matrix Θ_{c}
$\Theta_{\mathrm{c}}(w, w, w, w)=\theta_{w} \sigma_{w}^{4}=c_{w}^{4}\left(a_{4}-4 a_{3} a_{1}+6 a_{2} a^{2}-3 a^{4}\right)$
$\Theta_{\mathrm{c}}(w, w, w, x)=c_{w}^{-1} c_{x} b_{1} \Theta_{c}(w, w, w, w)$
$\Theta_{\mathrm{c}}(w, w, x, x)=c_{w}^{2} c_{x}^{2}\left(a_{4} b_{2}-2 a_{3} a_{1}\left(b_{2}+b^{2}\right)+a_{2} a^{2}\left(b_{2}+5 b^{2}\right)-3 a^{4} b^{2}\right)$
$\Theta_{\mathrm{c}}(w, x, x, x)=c_{w} c_{x}^{3}\left(a_{4} b_{3}-a_{3} a_{1}\left(b_{3}+3 b_{2} b_{1}\right)+3 a_{2} a^{2}\left(b_{2} b_{1}+b^{3}\right)-3 a^{4} b^{3}\right)$
$\Theta_{\mathrm{c}}(w, w, x, y)=c_{x}^{-1} c_{y} h_{1} \Theta_{c}(w, w, x, x)$
$\Theta_{\mathrm{c}}(w, x, x, y)=c_{x}^{-1} c_{y} h_{1} \Theta_{c}(w, x, x, x)$
$\Theta_{\mathrm{c}}(w, x, y, y)=c_{w} c_{x} c_{y}^{2}\left(\left(a_{4}-a_{3} a_{1}\right) b_{3} h_{2}-\left(h_{2}+2 h^{2}\right)\left(\left(a_{3} a_{1}-a_{2} a^{2}\right) b_{2} b_{1}\right)+\left(a_{2} a^{2}-a^{4}\right) 3 b^{3} h^{2}\right)$
$\Theta_{\mathrm{c}}(w, x, y, z)=c_{y}^{-1} c_{z} o_{1}(r) \Theta_{c}(w, x, y, y)$

$a_{i}=\phi_{1, w-1}(i r)$	$b_{i}=\phi_{w, x-1}(i r)$	$h_{i}=\phi_{x, y-1}(i r)$	$o_{i}=\phi_{y, z-1}(i r)$
$a^{i}=\phi_{1, w-1}^{i}(r)$	$b^{i}=\phi_{w, x-1}^{i}(r)$	$h^{i}=\phi_{x, y-1}^{i}(r)$	

NPV of a serial project

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution

NPV of a serial project

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution
The example below illustrates the accuracy of the threeparameter lognormal distribution $\left(\mathfrak{L}_{3}\right)$:

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Optimal sequence of stages

- Moments of known sequence can be obtained using exact closed-form formulas

Optimal sequence of stages

- Moments of known sequence can be obtained using exact closed-form formulas
- How to obtain the optimal sequence of a set of stages that are potentially precedence related?

Optimal sequence of stages

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time
- Efficient algorithms are available for the general case

Agenda

- Introduction

- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a general project

NPV of a general project Scheduling policies

stage

stage \longrightarrow stage

NPV of a general project Scheduling policies

NPV of a general project Scheduling policies

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5)
\end{aligned}
$$

NPV of a general project Scheduling policies

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200
\end{aligned}
$$

NPV of a general project Scheduling policies

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Scheduling policies

$$
c_{1}=-50 \quad \text { Serial policies: }
$$

stage

- 1-2-3
- 1-3-2
- 2-1-3
- 2-3-1
- 3-1-2
- 3-2-1

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Scheduling policies

- Serial policies:
- 1-2-3
- 1-3-2
- 2-1-3
- 2-3-1
- 3-1-2
- 3-2-1
- Early-Start (ES) policy: Start 1 \& 2. Start 3 upon completion of 2.

NPV of a general project Scheduling policies

- Serial policies:
- 1-2-3
- 1-3-2
- 2-1-3
- 2-3-1
- 3-1-2
- 3-2-1
- Early-Start (ES) policy: Start 1 \& 2. Start 3 upon completion of 2.
- Optimal policy: Start 2. Start 1 \& 3 upon completion of 2 .

NPV of a general project Early-Start policy

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Early-Start policy

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Early-Start policy

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?
- What discount factor do we use?
- $\phi_{1}(r)$
- $\phi_{2,3}(r)$

NPV of a general project Early-Start policy

$c_{2}=-20 \quad c_{3}=-10$

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?
- What discount factor do we use?
- $\phi_{1}(r)$
- $\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic

NPV of a general project Early-Start policy

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?
- What discount factor do we use?
- $\phi_{1}(r)$
- $\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic
\Rightarrow Approximations are required!

NPV of a general project Optimal policy

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Optimal policy

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel

NPV of a general project Optimal policy

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?
- $\phi_{2}(r) \phi_{1}(r)$
- $\phi_{2}(r) \phi_{3}(r)$

NPV of a general project Optimal policy

$f_{1}(t) \sim E x p(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?
- $\phi_{2}(r) \phi_{1}(r)$
- $\phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages $1 \& 3$!

NPV of a general project Optimal policy

$f_{1}(t) \sim E x p(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?
- $\phi_{2}(r) \phi_{1}(r)$
- $\phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages $1 \& 3$!
\Rightarrow We need to determine the discount factor for this maximum distribution

NPV of a general project Optimal policy

$c_{2}=-20$
$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?

$$
\begin{aligned}
& -\phi_{2}(r) \phi_{1}(r) \\
& -\phi_{2}(r) \phi_{3}(r)
\end{aligned}
$$

- The payoff is obtained after the maximum duration of stages $1 \& 3$!
\Rightarrow We need to determine the discount factor for this maximum distribution
\Rightarrow If this is not possible, approximations are required!

NPV of a general project

The example below illustrates the accuracy of the three-parameter lognormal distribution $\left(\mathscr{L}_{3}\right)$ for the ES and the optimal policy:

Agenda

- Introduction

- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Conclusion

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions
- Higher moments \& the distribution of the NPV of a general project can be approximated
?

