Moments and Distribution of the NPV of a Project

Stefan Creemers (October 25, 2017)

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

Agenda

- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation
- We develop exact, closed-form expressions for the moments of project NPV & develop an accurate approximation of the NPV distribution itself

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

• c_w = cash flow incurred at start of stage w

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred

$$v_w = c_w \int_0^\infty f_w(t) \, e^{-rt} \, dt$$

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred
- r = discount rate

$$v_w = c_w \int_0^\infty f_w(t) e^{-rt} dt \quad v_w = c_w M_{f_w(t)}(-r)$$

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred
- r = discount rate
- $M_{f_w(t)}(-r)$ = moment generating function of $f_w(t)$ about -r

$$v_w = c_w \int_0^\infty f_w(t) e^{-rt} dt \quad v_w = c_w M_{f_w(t)}(-r) \quad v_w = c_w \phi_w(r)$$

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred
- r = discount rate
- $M_{f_w(t)}(-r)$ = moment generating function of $f_w(t)$ about -r
- $\phi_w(r)$ = discount factor for stage w

- Using discount factor $\phi_w(r)$, we can obtain the moments of the NPV:
 - $\mu_{w} = c_{w}\phi_{w}(r)$ $- \sigma_{w}^{2} = c_{w}^{2}(\phi_{w}(2r) - \phi_{w}^{2}(r))$ $- \gamma_{w} = c_{w}^{3}(\phi_{w}(3r) - 3\phi_{w}(2r)\phi_{w}(r) + 2\phi_{w}^{3}(r))\sigma_{w}^{-3}$ $- \theta_{w} = c_{w}^{4}(\phi_{w}(4r) - 4\phi_{w}(3r)\phi_{w}(r) + 6\phi_{w}(2r)\phi_{w}^{2}(r) - 3\phi_{w}^{4}(r))\sigma_{w}^{-4}$

• Using discount factor $\phi_w(r)$, we can obtain the moments of the NPV:

$$- \mu_{w} = c_{w}\phi_{w}(r)
- \sigma_{w}^{2} = c_{w}^{2}(\phi_{w}(2r) - \phi_{w}^{2}(r))
- \gamma_{w} = c_{w}^{3}(\phi_{w}(3r) - 3\phi_{w}(2r)\phi_{w}(r) + 2\phi_{w}^{3}(r)) \sigma_{w}^{-3}
- \theta_{w} = c_{w}^{4}(\phi_{w}(4r) - 4\phi_{w}(3r)\phi_{w}(r) + 6\phi_{w}(2r)\phi_{w}^{2}(r) - 3\phi_{w}^{4}(r)) \sigma_{w}^{-4}$$

The CDF & PDF of the NPV of c_w are:

$$- G_w(v) = 1 - F_w\left(\ln\left(\frac{c_w}{v}\right)r^{-1}\right)$$
$$- g_w(v) = \frac{f_w\left(\ln\left(\frac{c_w}{v}\right)r^{-1}\right)}{|r|v}$$

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_{1} & \mathsf{stage}_{1} & \mathsf{stage}_{w-1} & \mathsf{f}_w(t) & \mathsf{stage}_{w} \\ v_w \phi_1(r) & 1 & \phi_{\dots}(r) & w-1 & \phi_w(r) & \mathsf{stage}_{w} \\ c_w \end{array}$$

 $v_w = c_w \phi_1(r) \dots \phi_w(r)$

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_1 \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ \mathbf{f}_w(r) &$$

$$v_w = c_w \phi_1(r) \dots \phi_w(r)$$
 $v_w = c_w \prod_{i=1}^w \phi_i(r)$

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_1 \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ \mathbf{f}_w(r) &$$

 $v_w = c_w \phi_1(r) \dots \phi_w(r)$ $v_w = c_w \prod_{i=1}^w \phi_i(r)$ $v_w = c_w \phi_{1,w}(r)$

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_{1} & \mathsf{stage}_{1} & \mathsf{stage}_{w-1} & \mathsf{f}_w(t) & \mathsf{stage}_{w} \\ v_w \phi_1(r) & 1 & \phi_{\dots}(r) & w-1 & \phi_w(r) & \mathsf{stage}_{w} \\ c_w \end{array}$$

 $v_w = c_w \phi_1(r) \dots \phi_w(r)$ $v_w = c_w \prod_{i=1}^w \phi_i(r)$ $v_w = c_w \phi_{1,w}(r)$

• We can obtain the moments of the NPV of cash flow c_w : $-\mu_w = c_w \phi_{1,w}(r)$ $-\sigma_w^2 = c_w^2(\phi_{1,w}(2r) - \phi_{1,w}^2(r))$ $-\dots$

• The mean and variance of the distribution of time until cash flow *c*_w is incurred is:

$$-d_{1,w} = \sum_{i=1}^{w} d_i$$

$$- s_{1,w}^2 = \sum_{i=1}^{w} s_i^2$$

• The mean and variance of the distribution of time until cash flow c_w is incurred is:

$$- d_{1,w} = \sum_{i=1}^{w} d_i$$

$$- s_{1,w}^2 = \sum_{i=1}^w s_i^2$$

• If stage w is preceded by a sufficient number of stages, $f_{1,w}(t)$ is normally distributed with mean $d_{1,w}$ and variance $s_{1,w}^2$

• The mean and variance of the distribution of time until cash flow c_w is incurred is:

$$- d_{1,w} = \sum_{i=1}^{w} d_i$$

$$- s_{1,w}^2 = \sum_{i=1}^w s_i^2$$

- If stage w is preceded by a sufficient number of stages, $f_{1,w}(t)$ is normally distributed with mean $d_{1,w}$ and variance $s_{1,w}^2$
- If $f_{1,w}(t)$ is normally distributed, the NPV of cash flow c_w is lognormally distributed!

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

 $v = v_1 + \ldots + v_{w-1} + v_w$

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

Mean μ

 $\mu_w = c_w a_1$

Covariance matrix Σ_c $\Sigma_c(w, w) = \sigma_w^2 = c_w^2(a_2 - a^2)$ $\Sigma_c(w, x) = c_w c_x b_1 (a_2 - a^2) = c_w^{-1} c_x b_1 \Sigma_c(w, w)$

Central coskewness matrix Γ_c $\Gamma_c(w, w, w) = \gamma_w \sigma_w^3 = c_w^3 (a_3 - 3a_2a_1 + 2a^3)$ $\Gamma_c(w, w, x) = c_w^{-1}c_xb_1\Gamma_c(w, w, w)$ $\Gamma_c(w, x, x) = c_wc_x^2 (a_3b_2 - a_2a_1 (2b^2 + b_2) + 2a^3b^2)$ $\Gamma_c(w, x, y) = c_x^{-1}c_yh_1\Gamma_c(w, x, x)$

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution

The example below illustrates the accuracy of the threeparameter lognormal distribution (\mathcal{L}_3):

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

 Moments of known sequence can be obtained using exact closed-form formulas

- Moments of known sequence can be obtained using exact closed-form formulas
- How to obtain the optimal sequence of a set of stages that are potentially precedence related?

 The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time
- Efficient algorithms are available for the general case

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

NPV of a general project

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ p = 200

p = 200 r = 0.1

- Serial policies:

 1-2-3
 1-3-2
 - 2-1-3
 - 2-3-1
 - 3-1-2
 - 3-2-1

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- Serial policies:
 - 1-2-3
 - 1-3-2
 - 2-1-3
 - 2-3-1
 - 3-1-2
 - 3-2-1
- Early-Start (ES) policy: Start 1 & 2. Start 3 upon completion of 2.

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- Serial policies:
 - 1-2-3
 - 1-3-2
 - 2-1-3
 - 2-3-1
 - 3-1-2
 - 3-2-1

. . .

- Early-Start (ES) policy: Start 1 & 2. Start 3 upon completion of 2.
- Optimal policy: Start 2. Start 1 & 3 upon completion of 2.

p = 200 r = 0.1

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?
- What discount factor do we use?

 $-\phi_1(r) - \phi_{2,3}(r)$

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ p = 200 r = 0.1

 $c_2 = -20$ $c_3 = -10$ stage stage

 $f_1(t) \sim Exp(1)$ $f_{2.3}(t) \sim Exp(0.5)$ p = 200 r = 0.1

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?
- What discount factor do we use?
 - $-\phi_1(r)$
 - $-\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?
- What discount factor do we use?
 - $-\phi_1(r)$
 - $-\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic

 \Rightarrow Approximations are required!

p = 200 r = 0.1

Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

 $f_{2,3}(t) \sim Exp(0.5)$

p = 200 r = 0.1

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?

 $- \phi_{2}(r) \phi_{1}(r) \\ - \phi_{2}(r) \phi_{3}(r)$

 $f_{2.3}(t) \sim Exp(0.5)$

p = 200 r = 0.1

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?
 - $\phi_{2}(r) \phi_{1}(r)$ $- \phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages 1 & 3!

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?
 - $\phi_{2}(r) \phi_{1}(r) \\ \phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages 1 & 3!
- ⇒ We need to determine the discount factor for this maximum distribution

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?
 - $\phi_{2}(r) \phi_{1}(r) \\ \phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages 1 & 3!
- ⇒ We need to determine the discount factor for this maximum distribution
- ⇒ If this is not possible, approximations are required!

NPV of a general project

The example below illustrates the accuracy of the three-parameter lognormal distribution (\mathcal{L}_3) for the ES and the optimal policy:

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

• We obtain exact, closed-form expressions for the moments of the NPV of serial projects

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions
- Higher moments & the distribution of the NPV of a general project can be approximated

