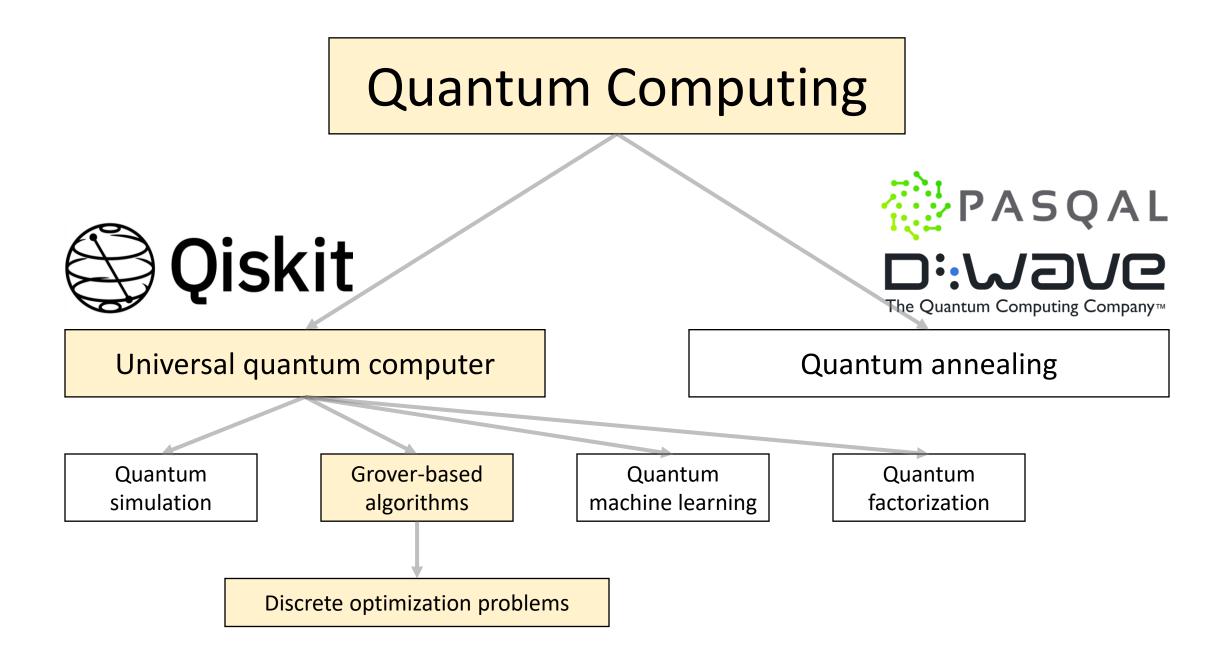


Discrete optimization: A quantum revolution?

Stefan Creemers

Luis Fernando Pérez

October 18, 2023



Discrete optimization problems

• In the most general form:

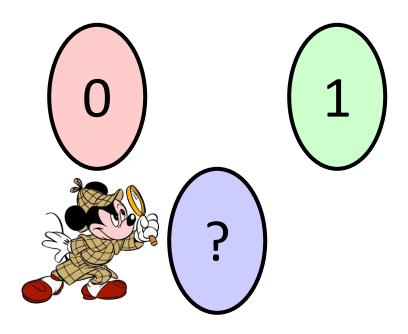
optimize $g(x_1, x_2, ..., x_n)$ subject to $x_i \in \Omega_i, \forall i: 0 \le i \le n$ (any other constraint)

- Where:
 - g(x) is the objective function that evaluates assignment $x = \{x_1, x_2, ..., x_n\}$.
 - *n* is the number of decision variables.
 - x_i is the i^{th} decision variable.
 - Ω_i is the set of discrete values that can be assigned to decision variable x_i .
- Objective function and/or constraints do not have to be linear!
- Examples include: 3SAT, knapsack, TSP, complex non-linear integer programming problems, and most other OR problems discussed here at INFORMS

Basic unit of information: Classic vs quantum

Classical computing

- Bit.
- Can take on values 0 and 1.



Quantum computing

- Qubit.
- Can take on values 0 and 1.
- Can be in a superposition state.
- Only after observing the qubit, the state collapses to basis state 0 or 1.
- The probability that the state of a qubit collapses to 0 or 1 depends on the superposition.
- In case of a uniform superposition, there is a 50% chance to collapse into either 0 or 1.

Solving the binary knapsack problem

- n = 3 items.
- Maximum weight W = 4.
- Optimal solution value $V^* = 5$.
- Solution $x = \{x_1, x_2, ..., x_n\}.$
- Weight of x is W_x .
- Value of x is V_x .

 W_i v_i 3 1 2 2 3 1 3 2 2 n = 3W = 4 $V^{*} = 5$ $W_{\mathbf{x}} = \sum w_i x_i$ $V_{\mathbf{x}} = \sum v_i x_i$ $x = \{x_1, x_2, x_3\}$ $f(\mathbf{x}) = 1$ if $W_{\mathbf{x}} \leq W$ and $V_{\mathbf{x}} \geq V^*$

• Function f(x) evaluates whether solution x is valid; has weight W_x that does not exceed weight capacity W, and value V_x is at least equal to V^* .

Solving the binary knapsack problem

- Classical computing:
 - Full enumeration requires $2^n = 8$ calls to function f(x).
 - Each call to f(x) requires η operations.
 - In case of knapsack, $\eta = O(n) \rightarrow$ full enumeration has complexity $O(n2^n)$.
 - Best classical algorithm to solve binary knapsack has complexity $O(n\sqrt{2^n})$.
- Quantum computing:
 - Given a (uniform) superposition of three qubits, only a single call to f(x) is required to obtain f(x) for each possible solution → complexity O(n)?
 - Each solution, however, has probability 2⁻ⁿ = 0.125 to be measured → we only have a 12.5% chance to measure 101.

i	Wi	v_i			
1	2	3			
2	3	1			
3	2	2			
<i>n</i> = 3	W = 4	$V^{*} = 5$			
$x = \{x_1, x_2, x_3\}$	$W_x = \sum w_i x_i$	$V_x = \sum v_i x_i$			
$f(x) = 1$ if $W_x \le W$ and $V_x \ge V^*$					

x	W_x	V_{x}	$f(\mathbf{x})$	P(x)
000	0	0		0.125
100	2	3		0.125
010	3	1 8	A A A A	0.125
110	5	4		0.125
001	2	2 🥌		0.125
101	4	5	1	0.125
011	5	3	0	0.125
111	7	6	0	0.125

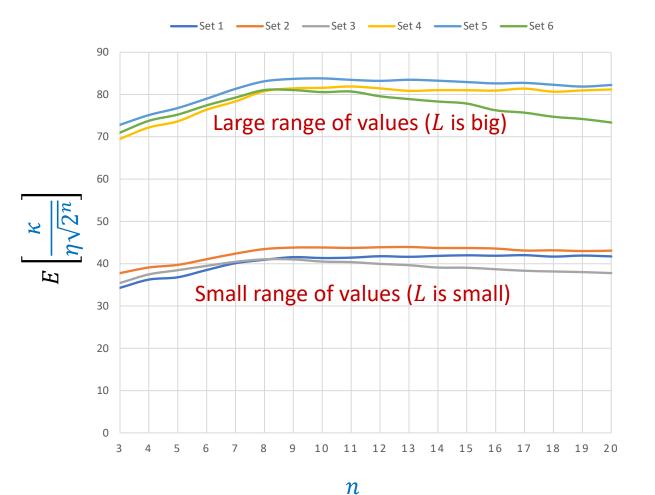
Grover's algorithm

- Grover's algorithm maximizes the probability to measure a solution x that has f(x) = 1 using roughly $\sqrt{2^n/m}$ iterations, where m is the number of solutions for which f(x) = 1.
- In our example, there is only one solution (i.e., 101) that has f(x) = 1; that has V ≥ V*(i.e., m = 1).
- If m = 1, to find 101, Grover's algorithm needs roughly $\sqrt{2^n}$ iterations (and hence calls to f(x)).
- To find 101 on a classical computer, we need up to 2ⁿ calls to f(x) if we use full enumeration → Grover's algorithm achieves a quadratic speedup?
- When using Grover's algorithm to solve discrete optimization problems, we face two problems:
 - We don't know *m*.
 - We don't know V^* .

Binary Search Procedure (BSP)

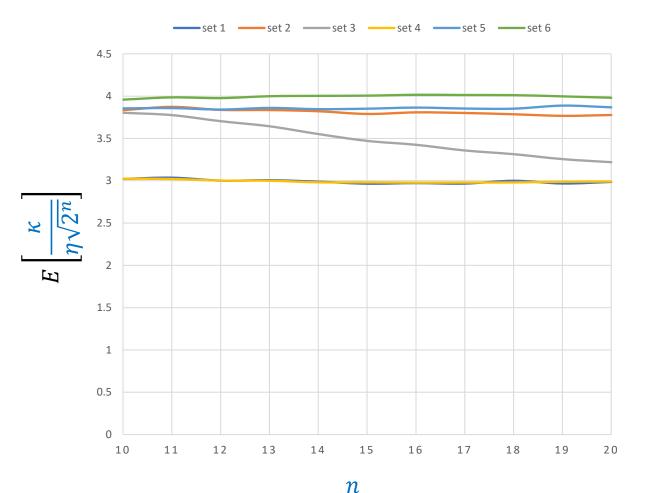
- To solve these problems, we propose a Binary Search Procedure (BSP).
- First, to find the optimal value V^* , BSP initializes a minimum value V_{min} and a maximum value V_{max} . Next, binary search is used to evaluate different values of V until V^* is identified.
- For each value V, BSP also evaluates different values of m:
 - If, for a given value of m, a valid solution x is measured (that has value $V_x \ge V$), we let $V_{min} = V + 1$.
 - If no valid solution can be found, we let $V_{max} = V 1$.
- Million-dollar question: do we still achieve a quadratic speedup?

BSP: Results and complexity



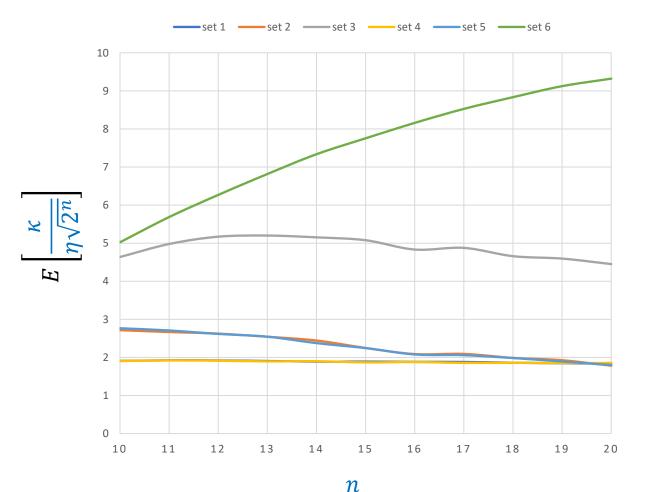
- We use BSP to solve 1000 knapsack problems for:
 - Values of $n \in [3, ..., 20]$.
 - 6 problem sets
- We report the expected number of operations required to solve a knapsack problem (κ) divided by $\eta \sqrt{2^n}$.
- Complexity BSP is $O(\eta L \sqrt{2^n})$, where L is a logarithmic term depending on the range of values of knapsack items.
- No quadratic speedup due to logarithmic term *L*, however: can we do better?

Random Ascent Procedure (RAP)



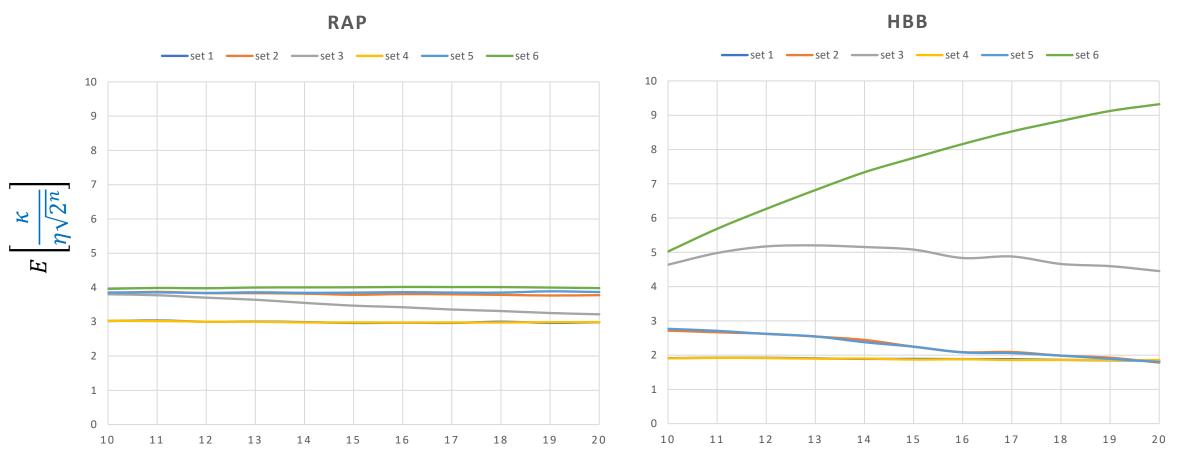
- Iterative procedure that uses Grover's algorithm to find a solution that has a better value than the best-found solution.
- If we measure, a better solution is chosen at random from the set of solutions that can still improve the best-found solution.
- RAP has worst-case expected complexity $O(\eta\sqrt{2^n})$.
- recall that for knapsack the best classical algorithm also has complexity $O(\eta\sqrt{2^n})$.

Hybrid Branch-and-Bound (HBB)

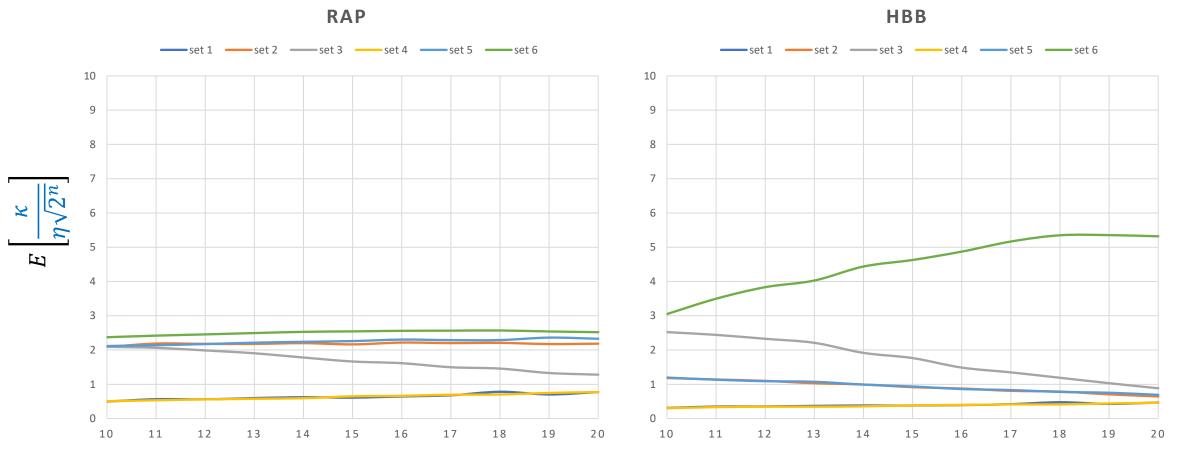


- Uses a tree that has *n* levels.
- At each level *i*, you create a node for each discrete value that can be assigned to decision variable *x_i* (i.e., you create a partial solution where the first *i* decision variables have been assigned a value).
- In each node, we use Grover's algorithm to see if we can find a solution for the remaining n - i decision variables that improves the best-found solution:
 - If such a solution can be found, we branch.
 - If no solution can be found, we fathom the node.
- HBB also has complexity $O(\eta \sqrt{2^n})$.

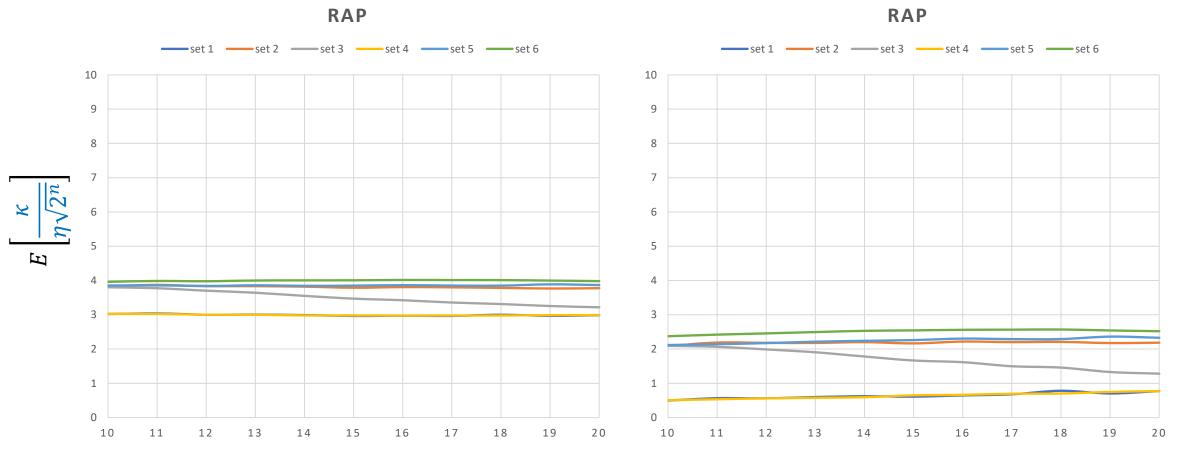
RAP versus HBB (solving to optimality)



RAP vs HBB (finding optimal solution for 1st time)

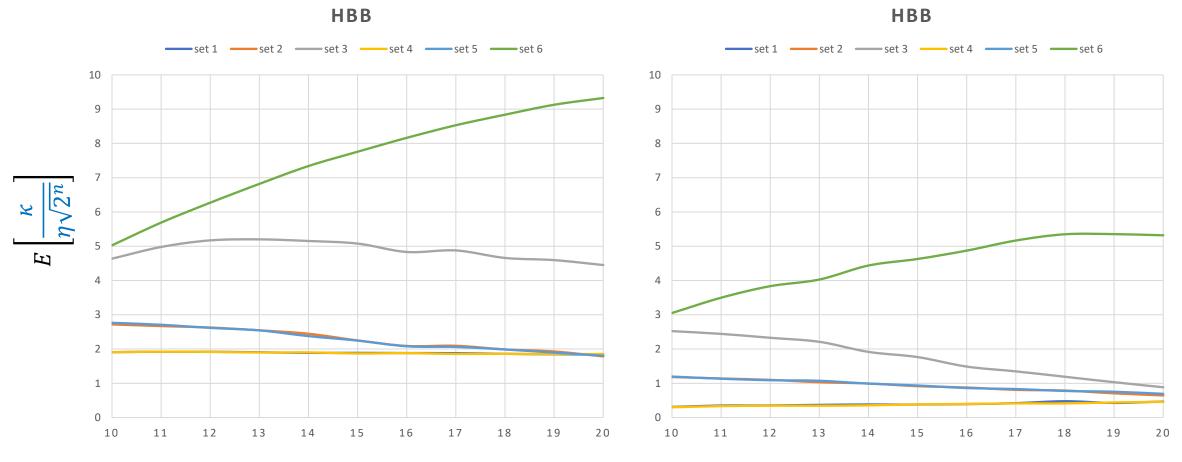


RAP: Time to find optimal solution versus time to find optimal solution for 1st time



n

HBB: Time to find optimal solution versus time to find optimal solution for 1st time



Conclusions

- We identified the problems faced when using Grover's algorithm to solve discrete optimization problems.
- We use Grover's algorithm as a subroutine in:
 - BSP (Binary Search Procedure).
 - RAP (Random Ascent Procedure).
 - HBB (Hybrid Branch-and-Bound).
- We use these algorithms to solve 108000 binary knapsack problems.
- We show that:
 - RAP & HBB require at most $O(\eta\sqrt{2^n})$ operations to find the optimal solution.
 - RAP & HBB match performance of best classical algorithms when solving knapsack.
 - RAP & HBB can also be used as heuristics using far less operations.
 - RAP & HBB can be used to solve <u>ANY</u> discrete optimization problem to optimality.

R

Scan the QR or use link to join

https://forms.office.com /e/GcViS7DZzN

Copy link

Will quantum computing cause a revolution in the field of discrete optimization?

 Yes
 100%

 No
 0%

 Treemap
 Bar
 I of 1

4 responses submitted

Want to know more?

- Read our three papers (currently under review):
 - Discrete optimization: A quantum revolution (Part I).
 - Discrete optimization: A quantum revolution (Part II).
 - Discrete optimization: Limitations of existing quantum algorithms.
- Available on SSRN and on my personal website (<u>www.cromso.com</u>).
- Coming soon to arXiv.
- Contact us:
 - <u>sc@cromso.com</u>
 - <u>l.fernando@ieseg.fr</u>