## inferms

# Discrete optimization: A quantum revolution? 

Stefan Creemers

Luis Fernando Pérez
October 18, 2023
,
LEUVEN

## Quantum Computing

PASQAL ロ：っいコレ巳
The Quantum Computing Companym


Quantum annealing

Quantum
machine learning
Quantum
factorization

## Discrete optimization problems

- In the most general form:

> optimize $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
> subject to
> $x_{i} \in \Omega_{i}, \forall i: 0 \leq i \leq n$
> (any other constraint)

- Where:
- $g(x)$ is the objective function that evaluates assignment $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- $n$ is the number of decision variables.
- $x_{i}$ is the $i^{\text {th }}$ decision variable.
- $\Omega_{i}$ is the set of discrete values that can be assigned to decision variable $x_{i}$.
- Objective function and/or constraints do not have to be linear!
- Examples include: 3SAT, knapsack, TSP, complex non-linear integer programming problems, and most other OR problems discussed here at INFORMS


## Basic unit of information: Classic vs quantum

## Classical computing

- Bit.
- Can take on values 0 and 1 .



## Quantum computing

- Qubit.
- Can take on values 0 and 1 .
- Can be in a superposition state.
- Only after observing the qubit, the state collapses to basis state 0 or 1 .
- The probability that the state of a qubit collapses to 0 or 1 depends on the superposition.
- In case of a uniform superposition, there is a $50 \%$ chance to collapse into either 0 or 1.


## Solving the binary knapsack problem

- $n=3$ items.
- Maximum weight $W=4$.
- Optimal solution value $V^{*}=5$.
- Solution $\boldsymbol{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

| $i$ | $w_{i}$ | $v_{i}$ |
| :---: | :---: | :---: |
| 1 | 2 | 3 |
| 2 | 3 | 1 |
| 3 | 2 | 2 |
| $n=3$ | $W=4$ | $V^{*}=5$ |
| $\boldsymbol{x}=\left\{x_{1}, x_{2}, x_{3}\right\}$ | $W_{\boldsymbol{x}}=\sum w_{i} x_{i}$ | $V_{\boldsymbol{x}}=\sum v_{i} x_{i}$ |
| $f(\boldsymbol{x})=1$ if $W_{\boldsymbol{x}} \leq W$ and $V_{\boldsymbol{x}} \geq V^{*}$ |  |  |

- Weight of $x$ is $W_{x}$.
- Value of $x$ is $V_{x}$.
- Function $f(x)$ evaluates whether solution $x$ is valid; has weight $W_{x}$ that does not exceed weight capacity $W$, and value $V_{x}$ is at least equal to $V^{*}$.


## Solving the binary knapsack problem

- Classical computing:
- Full enumeration requires $2^{n}=8$ calls to function $f(x)$.
- Each call to $f(x)$ requires $\eta$ operations.
- In case of knapsack, $\eta=O(n) \rightarrow$ full enumeration has complexity $O\left(n 2^{n}\right)$.
- Best classical algorithm to solve binary knapsack has complexity $O\left(n \sqrt{2^{n}}\right)$.
- Quantum computing:
- Given a (uniform) superposition of three qubits, only a single call to $f(x)$ is required to obtain $f(x)$ for each possible solution $\rightarrow$ complexity $O(n)$ ?
- Each solution, however, has probability $2^{-n}=0.125$ to be measured $\rightarrow$ we only have a $12.5 \%$ chance to measure 101 .

| $i$ | $w_{i}$ | $v_{i}$ |
| :---: | :---: | :---: |
| 1 | 2 | 3 |
| 2 | 3 | 1 |
| 3 | 2 | 2 |
| $n=3$ | $W=4$ | $V^{*}=5$ |
| $\boldsymbol{x}=\left\{x_{1}, x_{2}, x_{3}\right\}$ | $W_{x}=\sum w_{i} x_{i}$ | $V_{x}=\sum v_{i} x_{i}$ |
| $f(\boldsymbol{x})=1$ if $W_{x} \leq W$ and $V_{x} \geq V^{*}$ |  |  |


| $\boldsymbol{x}$ | $W_{\boldsymbol{x}}$ | $V_{x}$ | $f(\boldsymbol{x})$ | $P(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 000 | 0 | 0 |  | 0.125 |
| 100 | 2 | 3 |  | 0.125 |
| 010 | 3 | 1 |  | 0 |
| 110 | 5 | 4 | 0.125 |  |
| 001 | 2 | 2 |  | 0.125 |
| 101 | 4 | 5 | 1 | 0.125 |
| 011 | 5 | 3 | 0 | 0.125 |
| 111 | 7 | 6 | 0 | 0.125 |

## Grover's algorithm



- Grover's algorithm maximizes the probability to measure a solution $x$ that has $f(x)=1$ using roughly $\sqrt{2^{n} / m}$ iterations, where $m$ is the number of solutions for which $f(x)=1$.
- In our example, there is only one solution (i.e., 101) that has $f(\boldsymbol{x})=1$; that has $V \geq V^{*}$ (i.e., $m=1$ ).
- If $m=1$, to find 101, Grover's algorithm needs roughly $\sqrt{2^{n}}$ iterations (and hence calls to $f(\boldsymbol{x})$ ).
- To find 101 on a classical computer, we need up to $2^{n}$ calls to $f(x)$ if we use full enumeration $\rightarrow$ Grover's algorithm achieves a quadratic speedup?
- When using Grover's algorithm to solve discrete optimization problems, we face two problems:
- We don't know $m$.
- We don't know $V^{*}$.


## Binary Search Procedure (BSP)

- To solve these problems, we propose a Binary Search Procedure (BSP).
- First, to find the optimal value $V^{*}$, BSP initializes a minimum value $V_{\min }$ and a maximum value $V_{\max }$. Next, binary search is used to evaluate different values of $V$ until $V^{*}$ is identified.
- For each value $V$, BSP also evaluates different values of $m$ :
- If, for a given value of $m$, a valid solution $x$ is measured (that has value $V_{x} \geq$ $V$ ), we let $V_{\min }=V+1$.
- If no valid solution can be found, we let $V_{\max }=V-1$.
- Million-dollar question: do we still achieve a quadratic speedup?


## BSP: Results and complexity



- We use BSP to solve 1000 knapsack problems for:
- Values of $n \in[3, \ldots, 20]$.
- 6 problem sets
- We report the expected number of operations required to solve a knapsack problem ( $\kappa$ ) divided by $\eta \sqrt{2^{n}}$.
- Complexity BSP is $O\left(\eta L \sqrt{2^{n}}\right)$, where $L$ is a logarithmic term depending on the range of values of knapsack items.
- No quadratic speedup due to logarithmic term $L$, however: can we do better?


## Random Ascent Procedure (RAP)



- Iterative procedure that uses Grover's algorithm to find a solution that has a better value than the best-found solution.
- If we measure, a better solution is chosen at random from the set of solutions that can still improve the best-found solution.
- RAP has worst-case expected complexity $O\left(\eta \sqrt{2^{n}}\right)$.
- recall that for knapsack the best classical algorithm also has complexity $O\left(\eta \sqrt{2^{n}}\right)$.


## Hybrid Branch-and-Bound (HBB)



- Uses a tree that has $n$ levels.
- At each level $i$, you create a node for each discrete value that can be assigned to decision variable $x_{i}$ (i.e., you create a partial solution where the first $i$ decision variables have been assigned a value).
- In each node, we use Grover's algorithm to see if we can find a solution for the remaining $n-i$ decision variables that improves the best-found solution:
- If such a solution can be found, we branch.
- If no solution can be found, we fathom the node.
- HBB also has complexity $O\left(\eta \sqrt{2^{n}}\right)$.


## RAP versus HBB (solving to optimality)

RAP



HBB



## RAP vs HBB (finding optimal solution for $1^{\text {st }}$ time)

RAP



HBB


RAP: Time to find optimal solution versus time to find optimal solution for $1^{\text {st }}$ time


## HBB: Time to find optimal solution versus time to find optimal solution for $1^{\text {st }}$ time

HBB



HBB


## Conclusions

- We identified the problems faced when using Grover's algorithm to solve discrete optimization problems.
- We use Grover's algorithm as a subroutine in:
- BSP (Binary Search Procedure).
- RAP (Random Ascent Procedure).
- HBB (Hybrid Branch-and-Bound).
- We use these algorithms to solve 108000 binary knapsack problems.
- We show that:
- RAP \& HBB require at most $O\left(\eta \sqrt{2^{n}}\right)$ operations to find the optimal solution.
- RAP \& HBB match performance of best classical algorithms when solving knapsack.
- RAP \& HBB can also be used as heuristics using far less operations.
- RAP \& HBB can be used to solve ANY discrete optimization problem to optimality.

Scan the QR or use

Yes $\square$ $100 \%$


Will quantum computing cause a revolution in the field of discrete optimization?
https://forms.office.com /e/GcViS7DZzN
(1) Copy link

No 0\%


## Want to know more?

- Read our three papers (currently under review):
- Discrete optimization: A quantum revolution (Part I).
- Discrete optimization: A quantum revolution (Part II).
- Discrete optimization: Limitations of existing quantum algorithms.
- Available on SSRN and on my personal website (www.cromso.com).
- Coming soon to arXiv.
- Contact us:
- sc@cromso.com
- l.fernando@ieseg.fr

