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Introduction

• The Joint Replenishment Problem (JRP) is a well-known 
problem in the ORMS literature

• 2,080 hits on 
• General idea:

– You keep several Stock Keeping Units (SKUs) in inventory.
– For each SKU 𝑖, you incur a holding cost ℎ𝑖 and face a 

Poisson demand with rate parameter 𝜆𝑖.
– You can replenish the inventory of an SKU by issuing an 

order that has major order cost 𝐾. For each SKU 𝑖 included 
in the order, you incur minor order cost 𝑘𝑖.

• Million-dollar question: how do we coordinate orders 
such that holding and order costs are minimized?
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Introduction

• Ignall, E. 1969. Optimal continuous 
review policies for two product inventory 
systems with joint setup costs. 
Management Sci.,15(5), 278–283.

• Finding the optimal control policy is 
intractable, even for problems with only 
two SKUs

• Examples of tractable policies:

– Periodic policy; see e.g., Atkins & Iyogun
(1987) and Viswanathan (1997 & 2007)

– Can-order policy
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Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)
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Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).
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Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy

• Generalization of the decomposition approach
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New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.
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Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!
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Example

• Problem with two SKUs:
– 𝜆1 = 12 and 𝜆2 = 16

– ℎ1 = 12 and ℎ2 = 23

– 𝑘1 = 7 and 𝑘2 = 21

– 𝐾 = 25

• No lead time

• Best can-order policy:
– 𝑆1 = 7, 𝑐1 = 4, and 𝑠1 = 0

– 𝑆2 = 8, 𝑐2 = 2, and 𝑠2 = 0
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Generalized can-order policy

• Using the insights of the optimal JRP policy, the can-order policy can be
generalized using a greedy procedure:
– Start from the best can-order policy.

– For each combination of inventory levels of SKUs that do not join the order, evaluate
whether it is beneficial to alter the can-order level (and/or order-up-to level) of SKUs
that do join the order.

– Repeat until no further improvement can be found.

• After applying this to the Federgruen instances, we get:

• The difference is not substantial, however, we expect the gap to increase if
the number of SKUs increases!
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Generalized decomposition approach

• Our exact method can analyze problems with several SKUs. Therefore, we can
generalize the decomposition approach, and now also decompose the JRP 
into double-item and triple-item problems (next to single-item problems).

• In addition, rather than using an approximate (closed-form) cost function, we use
our method to analyze the exact cost of the single/double/triple-item problems.
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Generalized can-order policy (3 items)

• Best can-order policy:
– 𝑆1 = 6, 𝑐1 = 2, and 𝑠1 = 0

– 𝑆2 = 7, 𝑐2 = 2, and 𝑠2 = 0

– 𝑆3 = 7, 𝑐3 = 4, and 𝑠3 = 0

• It may be optimal to return 
inventory!
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