
The Joint Replenishment Problem
Optimal Policy And Exact Evaluation Method

Stefan Creemers
Robert Boute

(2022 ISIR)



Introduction

• The Joint Replenishment Problem (JRP) is a well-known 
problem in the ORMS literature

• 2,080 hits on 
• General idea:

– You keep several Stock Keeping Units (SKUs) in inventory.
– For each SKU 𝑖, you incur a holding cost ℎ𝑖 and face a 

Poisson demand with rate parameter 𝜆𝑖.
– You can replenish the inventory of an SKU by issuing an 

order that has major order cost 𝐾. For each SKU 𝑖 included 
in the order, you incur minor order cost 𝑘𝑖.

• Million-dollar question: how do we coordinate orders 
such that holding and order costs are minimized?



Introduction

• The Joint Replenishment Problem (JRP) is a well-known 
problem in the ORMS literature

• 2,080 hits on 
• General idea:

– You keep several Stock Keeping Units (SKUs) in inventory.
– For each SKU 𝑖, you incur a holding cost ℎ𝑖 and face a 

Poisson demand with rate parameter 𝜆𝑖.
– You can replenish the inventory of an SKU by issuing an 

order that has major order cost 𝐾. For each SKU 𝑖 included 
in the order, you incur minor order cost 𝑘𝑖.

• Million-dollar question: how do we coordinate orders 
such that holding and order costs are minimized?



Introduction

• The Joint Replenishment Problem (JRP) is a well-known 
problem in the ORMS literature

• 2,080 hits on 
• General idea:

– You keep several Stock Keeping Units (SKUs) in inventory.
– For each SKU 𝑖, you incur a holding cost ℎ𝑖 and face a 

Poisson demand with rate parameter 𝜆𝑖.
– You can replenish the inventory of an SKU by issuing an 

order that has major order cost 𝐾. For each SKU 𝑖 included 
in the order, you incur minor order cost 𝑘𝑖.

• Million-dollar question: how do we coordinate orders 
such that holding and order costs are minimized?



Introduction

• The Joint Replenishment Problem (JRP) is a well-known 
problem in the ORMS literature

• 2,080 hits on 
• General idea:

– You keep several Stock Keeping Units (SKUs) in inventory.
– For each SKU 𝑖, you incur a holding cost ℎ𝑖 and face a 

Poisson demand with rate parameter 𝜆𝑖.
– You can replenish the inventory of an SKU by issuing an 

order that has major order cost 𝐾. For each SKU 𝑖 included 
in the order, you incur minor order cost 𝑘𝑖.

• Million-dollar question: how do we coordinate orders 
such that holding and order costs are minimized?



Introduction

• The Joint Replenishment Problem (JRP) is a well-known 
problem in the ORMS literature

• 2,080 hits on 
• General idea:

– You keep several Stock Keeping Units (SKUs) in inventory.
– For each SKU 𝑖, you incur a holding cost ℎ𝑖 and face a 

Poisson demand with rate parameter 𝜆𝑖.
– You can replenish the inventory of an SKU by issuing an 

order that has major order cost 𝐾. For each SKU 𝑖 included 
in the order, you incur minor order cost 𝑘𝑖.

• Million-dollar question: how do we coordinate orders 
such that holding and order costs are minimized?



Introduction

• Ignall, E. 1969. Optimal continuous 
review policies for two product inventory 
systems with joint setup costs. 
Management Sci.,15(5), 278–283.

• Finding the optimal control policy is 
intractable, even for problems with only 
two SKUs

• Examples of tractable policies:

– Periodic policy; see e.g., Atkins & Iyogun
(1987) and Viswanathan (1997 & 2007)

– Can-order policy



Introduction

• Ignall, E. 1969. Optimal continuous 
review policies for two product inventory 
systems with joint setup costs. 
Management Sci.,15(5), 278–283.

• Finding the optimal control policy is 
intractable, even for problems with only 
two SKUs

• Examples of tractable policies:

– Periodic policy; see e.g., Atkins & Iyogun
(1987) and Viswanathan (1997 & 2007)

– Can-order policy



Introduction

• Ignall, E. 1969. Optimal continuous 
review policies for two product inventory 
systems with joint setup costs. 
Management Sci.,15(5), 278–283.

• Finding the optimal control policy is 
intractable, even for problems with only 
two SKUs

• Examples of tractable policies:

– Periodic policy; see e.g., Atkins & Iyogun
(1987) and Viswanathan (1997 & 2007)

– Can-order policy



Introduction

• Ignall, E. 1969. Optimal continuous 
review policies for two product inventory 
systems with joint setup costs. 
Management Sci.,15(5), 278–283.

• Finding the optimal control policy is 
intractable, even for problems with only 
two SKUs

• Examples of tractable policies:

– Periodic policy; see e.g., Atkins & Iyogun
(1987) and Viswanathan (1997 & 2007)

– Can-order policy



Introduction

• Ignall, E. 1969. Optimal continuous 
review policies for two product inventory 
systems with joint setup costs. 
Management Sci.,15(5), 278–283.

• Finding the optimal control policy is 
intractable, even for problems with only 
two SKUs

• Examples of tractable policies:

– Periodic policy; see e.g., Atkins & Iyogun
(1987) and Viswanathan (1997 & 2007)

– Can-order policy



Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)



Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)



Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)



Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)



Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)



Can-order policy

• Introduced by Balintfly (1964)
• For each SKU 𝑖 there are three parameters:

– Order-up-to level 𝑆𝑖
– Can-order level 𝑐𝑖
– Reorder point 𝑠𝑖

• If the inventory of one of the SKUs hits the reorder point, a 
replenishment order is triggered, and any other SKU that 
has inventory below/at the can-order level joins the order

• The exact cost of a can-order policy can be determined 
using a Continuous-Time Markov Chain (CTMC)

• However, for systems with more than a few SKUs, the CTMC 
becomes too big, and we can no longer determine the best 
can-order policy (curse of dimensionality!)



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Decomposition approach

• Introduced by Silver E.A. (1974), and further refined by Federgruen et 
al. (1984)

• Can be used to obtain a “good” can-order policy, even for large 
problems with many SKUs

• The decomposition approach decomposes the JRP into single-item 
problems that are solved iteratively:
– For each SKU 𝑖, find the best can-order parameters (𝑆𝑖, 𝑐𝑖, and 𝑠𝑖) in a single-item 

system where the replenishment orders of other SKUs are captured using so-called 
“special replenishment opportunities” that arrive with rate 𝜇𝑖.

– Given the updated can-order policy for SKU 𝑖, determine the new rate of special 
replenishment opportunities 𝜇𝑗 for all other SKUs 𝑗 ≠ 𝑖.

– Repeat this procedure for each SKU until the can-order policy itself convergences.

• Although the decomposition approach resolves the curse of 
dimensionality, there are some drawbacks:
– It is a heuristic procedure (the single-item problem for SKU 𝑖 ignores the interaction 

of SKUs 𝑗 ≠ 𝑖; all interaction is captured by a single parameter 𝜇𝑖).
– It approximates the cost of a single-item system using a closed-form expression. 

As a result, we need to simulate the can-order policy in order to obtain its real 
cost. In addition, to determine whether one can-order policy is better than 
another, we base ourselves on approximate costs (that may differ substantially 
from the real cost).



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy

• Generalization of the decomposition approach



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy

• Generalization of the decomposition approach



New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.



New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.



New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.



New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.

Number of states required for analyzing the best can-order policy for the Federgruen instances

Example problem 1 2 3

Traditional CTMC 34,848 34,848 18,000

New DTMC 256 300 853



New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.

Number of states required for analyzing the best can-order policy for the Federgruen instances

Example problem 1 2 3

Traditional CTMC 34,848 34,848 18,000

New DTMC 256 300 853



New, exact method

• In a traditional CTMC approach, a state is defined as a tuple 𝐼1, … , 𝐼𝑁 (with 𝐼𝑖 the inventory of 
SKU 𝑖, and 𝑁 the number of SKUs). For a given can-order policy, the number of states is given by 
ς𝑖=1
𝑁 (𝑆𝑖 − 𝑠𝑖). Even for problems with only a few SKUs, the CTMC can no longer be analyzed.

• We propose a new approach that uses a Discrete-Time Markov Chain (DTMC) that models transitions 
between so-called “initial states”; states in which we end up after an order has been triggered. By 

considering only initial states, we can reduce the number of states in our DTMC to σ𝑖=1
𝑁 ς𝑗≠𝑖(𝑆𝑖 − 𝑐𝑖).

• The reduction in the number of states can be significant:

• This huge reduction in the number of states allows us to analyze JRP policies of larger 
problems with several SKUs.

• In addition, we can easily extend our method (compound Poisson demand, lead time, 
backlog, lost sales…) without increasing the number of states.

Number of states required for analyzing the best can-order policy for the Federgruen instances

Example problem 1 2 3

Traditional CTMC 34,848 34,848 18,000

New DTMC 256 300 853



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy



Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!



Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!



Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!



Example

• Problem with two SKUs:
– 𝜆1 = 12 and 𝜆2 = 16

– ℎ1 = 12 and ℎ2 = 23

– 𝑘1 = 7 and 𝑘2 = 21

– 𝐾 = 25

• No lead time

• Best can-order policy:
– 𝑆1 = 7, 𝑐1 = 4, and 𝑠1 = 0

– 𝑆2 = 8, 𝑐2 = 2, and 𝑠2 = 0



Example

• Problem with two SKUs:
– 𝜆1 = 12 and 𝜆2 = 16

– ℎ1 = 12 and ℎ2 = 23

– 𝑘1 = 7 and 𝑘2 = 21

– 𝐾 = 25

• No lead time

• Best can-order policy:
– 𝑆1 = 7, 𝑐1 = 4, and 𝑠1 = 0

– 𝑆2 = 8, 𝑐2 = 2, and 𝑠2 = 0

(𝐼1, 𝐼2) (𝐼1, 𝐼2)
(0,8)
(0,7) (7,7)
(0,6) (7,6)
(0,5) (7,5)
(0,4) (7,4)
(0,3) (7,3)
(0,2) (7,8)
(0,1) (7,8)
(7,0) (7,8)
(6,0) (6,8)
(5,0) (5,8)
(4,0) (7,8)
(3,0) (7,8)
(2,0) (7,8)
(1,0) (7,8)

(7,8)

Can-order policy



Example

• Problem with two SKUs:
– 𝜆1 = 12 and 𝜆2 = 16

– ℎ1 = 12 and ℎ2 = 23

– 𝑘1 = 7 and 𝑘2 = 21

– 𝐾 = 25

• No lead time

• Best can-order policy:
– 𝑆1 = 7, 𝑐1 = 4, and 𝑠1 = 0

– 𝑆2 = 8, 𝑐2 = 2, and 𝑠2 = 0

(𝐼1, 𝐼2) (𝐼1, 𝐼2)
(0,8)
(0,7) (7,7)
(0,6) (7,6)
(0,5) (7,5)
(0,4) (7,4)
(0,3) (7,3)
(0,2) (7,8)
(0,1) (7,8)
(7,0) (7,8)
(6,0) (6,8)
(5,0) (5,8)
(4,0) (7,8)
(3,0) (7,8)
(2,0) (7,8)
(1,0) (7,8)

(7,8)
(𝐼1, 𝐼2) (𝐼1, 𝐼2)
(0,8)
(0,7) (7,7)
(0,6) (7,6)
(0,5) (7,5)
(0,4) (6,4)
(0,3) (7,3)
(0,2) (7,8)
(0,1) (7,8)
(7,0) (7,8)
(6,0) (6,7)
(5,0) (5,7)
(4,0) (4,7)
(3,0) (7,8)
(2,0) (7,8)
(1,0) (7,8)

(7,8)

Can-order policy Optimal policy



Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!



Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!



Optimal JRP policy

• The optimal policy has a can-order structure; if a set of 
SKUs joins the order triggered by SKU 𝑖, they will do so if
their inventory level is at/below a given can-order level. 
The can-order level (and the order-up-to level) of the SKUs
that join the order depends on the inventory levels of the
SKUs that do not join the order.

• Example
• Two important implications:

– The can-order policy is a logical heuristic; it adopts the structure
of the optimal policy.

– However, the can-order policy assumes a single can-order level 
for each SKU independent of the inventory levels of the SKUs
that do not join the order ➔ if the number of SKUs increases, 
the optimality gap is expected to increase as well!



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy



Generalized can-order policy

• Using the insights of the optimal JRP policy, the can-order policy can be
generalized using a greedy procedure:
– Start from the best can-order policy.

– For each combination of inventory levels of SKUs that do not join the order, evaluate
whether it is beneficial to alter the can-order level (and/or order-up-to level) of SKUs
that do join the order.

– Repeat until no further improvement can be found.

• After applying this to the Federgruen instances, we get:

• The difference is not substantial, however, we expect the gap to increase if
the number of SKUs increases!



Generalized can-order policy

• Using the insights of the optimal JRP policy, the can-order policy can be
generalized using a greedy procedure:
– Start from the best can-order policy.

– For each combination of inventory levels of SKUs that do not join the order, evaluate
whether it is beneficial to alter the can-order level (and/or order-up-to level) of SKUs
that do join the order.

– Repeat until no further improvement can be found.

• After applying this to the Federgruen instances, we get:

• The difference is not substantial, however, we expect the gap to increase if
the number of SKUs increases!



Generalized can-order policy

• Using the insights of the optimal JRP policy, the can-order policy can be
generalized using a greedy procedure:
– Start from the best can-order policy.

– For each combination of inventory levels of SKUs that do not join the order, evaluate
whether it is beneficial to alter the can-order level (and/or order-up-to level) of SKUs
that do join the order.

– Repeat until no further improvement can be found.

• After applying this to the Federgruen instances, we get:

• The difference is not substantial, however, we expect the gap to increase if
the number of SKUs increases!

Expected cost of can-order policy and generalized can-order policy

Example problem 1 2 3

Best can-order policy 77.51 80.87 67.80

Generalized can-order policy 77.36 80.73 67.45



Generalized can-order policy

• Using the insights of the optimal JRP policy, the can-order policy can be
generalized using a greedy procedure:
– Start from the best can-order policy.

– For each combination of inventory levels of SKUs that do not join the order, evaluate
whether it is beneficial to alter the can-order level (and/or order-up-to level) of SKUs
that do join the order.

– Repeat until no further improvement can be found.

• After applying this to the Federgruen instances, we get:

• The difference is not substantial, however, we expect the gap to increase if
the number of SKUs increases!

Expected cost of can-order policy and generalized can-order policy

Example problem 1 2 3

Best can-order policy 77.51 80.87 67.80

Generalized can-order policy 77.36 80.73 67.45



Generalized can-order policy

• Using the insights of the optimal JRP policy, the can-order policy can be
generalized using a greedy procedure:
– Start from the best can-order policy.

– For each combination of inventory levels of SKUs that do not join the order, evaluate
whether it is beneficial to alter the can-order level (and/or order-up-to level) of SKUs
that do join the order.

– Repeat until no further improvement can be found.

• After applying this to the Federgruen instances, we get:

• The difference is not substantial, however, we expect the gap to increase if
the number of SKUs increases!

Expected cost of can-order policy and generalized can-order policy

Example problem 1 2 3

Best can-order policy 77.51 80.87 67.80

Generalized can-order policy 77.36 80.73 67.45



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy

• Generalization of the decomposition approach



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy

• Generalization of the decomposition approach



Generalized decomposition approach

• Our exact method can analyze problems with several SKUs. Therefore, we can
generalize the decomposition approach, and now also decompose the JRP 
into double-item and triple-item problems (next to single-item problems).

• In addition, rather than using an approximate (closed-form) cost function, we use
our method to analyze the exact cost of the single/double/triple-item problems.



Generalized decomposition approach

• Our exact method can analyze problems with several SKUs. Therefore, we can
generalize the decomposition approach, and now also decompose the JRP
into double-item and triple-item problems (next to single-item problems).

• In addition, rather than using an approximate (closed-form) cost function, we use
our method to analyze the exact cost of the single/double/triple-item problems.



Generalized decomposition approach

• Our exact method can analyze problems with several SKUs. Therefore, we can
generalize the decomposition approach, and now also decompose the JRP
into double-item and triple-item problems (next to single-item problems).

• In addition, rather than using an approximate (closed-form) cost function, we use
our method to analyze the exact cost of the single/double/triple-item problems.

Expected cost of different policies for the Federgruen instances

Example problem 1 2 3

Decomposition approach (approximation) 88.71 89.98 71.53

Decomposition approach (exact) 81.03 83.62 68.52

Generalized decomposition (single item) 80.07 82.66 68.70

Generalized decomposition (double item) 78.10 82.16 68.04

Generalized decomposition (triple item) 77.97 81.27 67.96

Best can-order policy 77.51 80.87 67.80



Main contributions

• New, exact method to determine the cost of a 
JRP that partially solves the curse of 
dimensionality

• Characterization of the optimal JRP policy

• Introduction of a new, generalized can-order 
policy

• Generalization of the decomposition approach





Generalized can-order policy (3 items)

• Best can-order policy:
– 𝑆1 = 6, 𝑐1 = 2, and 𝑠1 = 0

– 𝑆2 = 7, 𝑐2 = 2, and 𝑠2 = 0

– 𝑆3 = 7, 𝑐3 = 4, and 𝑠3 = 0

• It may be optimal to return 
inventory!



Generalized can-order policy (3 items)

• Best can-order policy:
– 𝑆1 = 6, 𝑐1 = 2, and 𝑠1 = 0

– 𝑆2 = 7, 𝑐2 = 2, and 𝑠2 = 0

– 𝑆3 = 7, 𝑐3 = 4, and 𝑠3 = 0

• It may be optimal to return 
inventory!



Generalized can-order policy (3 items)

• Best can-order policy:
– 𝑆1 = 6, 𝑐1 = 2, and 𝑠1 = 0

– 𝑆2 = 7, 𝑐2 = 2, and 𝑠2 = 0

– 𝑆3 = 7, 𝑐3 = 4, and 𝑠3 = 0

• It may be optimal to return 
inventory!




