The Impact of service epochs on waiting times in a healthcare environment ORAHS'2007

Stefan Creemers and Marc Lambrecht

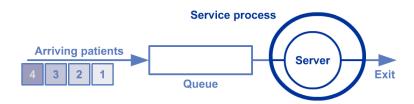
Research Center for Operations Management

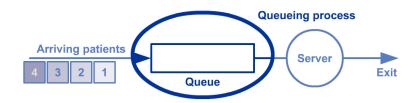
Katholieke Universiteit Leuven

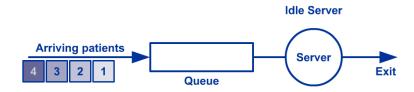
July 20, 2007

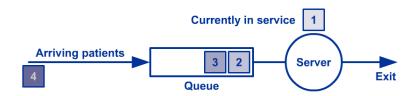
Problem description

- Problem setting: healthcare and other services
- Measures of interest:
 - Patient waiting time
 - Staff overtime
- Methodology: queueing theory
 - Focus on manufacturing
 - Healthcare modeling requires distinct approach









Problems in healthcare modeling

- Queue discipline
- Time varying demand
- Waiting creates additional work
- Service outages (absences and interrupts)
- Service epochs

Problems in healthcare modeling

- Queue discipline
- Time varying demand
- Waiting creates additional work
- Service outages (absences and interrupts)
- Service epochs

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

4 11 2 4 12 2 4 12 2 2 4 12 2 4 12 2

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

,

- Doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed

- Doctor's office with opening hours on Thursday from 6
 PM until 8 PM and on Friday from 2 PM until 6 PM
- On Thursday a maximum of 4 patients receives treatment, on Friday 8 patients are allowed



Performance measures of interest:

- Patient waiting time
 - At the waiting list
 - At the doctor's office
- Staff overtime

Performance measures of interest:

- Patient waiting time
 - At the waiting list
 - At the doctor's office
- Staff overtime

Two methodologies apply:

- Availability
- Vacation models

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Friday from 2 PM until 6 PM
- Availability:

$$A = \frac{6}{168} = \frac{1}{28}$$

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Mean and variance of the rescaled service times:

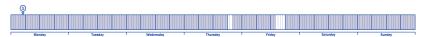
$$\frac{1}{\mu} = \frac{1}{A\mu_0}$$

$$\sigma^2 = \frac{\sigma_0^2}{A^2}$$

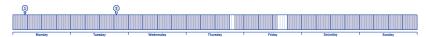
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

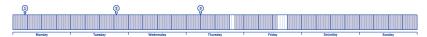
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



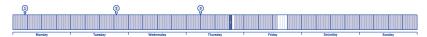
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



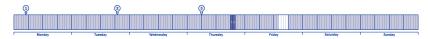
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



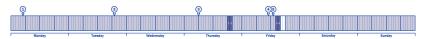
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

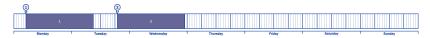
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

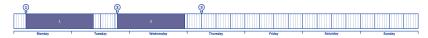
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

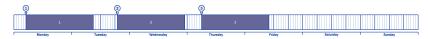
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



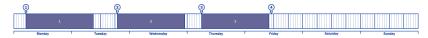
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



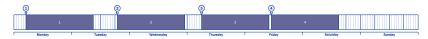
- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

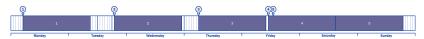


- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour

- Rescales the service process in order to fit a predefined uniform time scale (e.g. 24 hours per day, 7 days per week)
- Example: doctor's office with opening hours on Thursday from 6 PM until 8 PM and on Fridays from 2 PM until 6 PM
- Observe a single week, five arrivals with an average service time of 1 hour



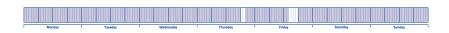
- Requirement to know capacity in advance
- Availability is inaccurate at modeling service epochs
- Simulation study:
 - Doctor's office, opening hours on Thursday from 6 PM until 8 PM and on Friday from 2 PM until 6 PM
 - On Thursday a maximum of 4 patients may be treated, on Friday 8 patients are allowed
 - Low variability service, patients always arrive on time, no unscheduled patients, . . .
 - Time between the making of two appointments is highly variable

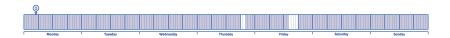
- Requirement to know capacity in advance
- Availability is inaccurate at modeling service epochs
- Simulation study:

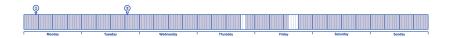
Α	=	$^{6}/_{168}$
ρ	=	0.6
C_e^2	=	1/3
C_a^2	=	4

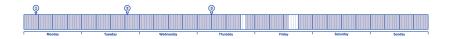
- Requirement to know capacity in advance
- Availability is inaccurate at modeling service epochs
- Simulation study:

Availability approach			
E [W]	=	1.8958	days
Weeks overtime	=	Ø	
Simulation			
E [W]	=	3.9959	days
Weeks overtime	=	46.18%	

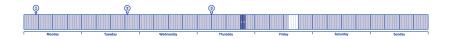


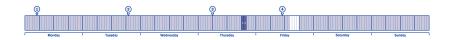


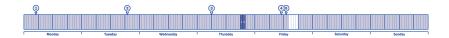


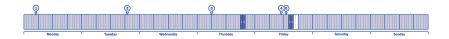


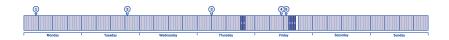


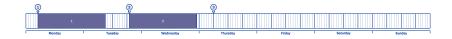










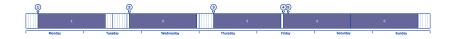




Why not use availability?

Why not use availability?

Why not use availability?

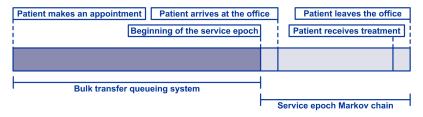


Two queues, two problems

- Two phases in a patients treatment process:
 - External phase (e.g. at home)
 - Internal phase (e.g. at the doctor's office)
- Division of the problem into 2 subproblems:
 - Bulk Transfer Queueing System (BTQS)
 - Service Epoch Markov Chain (SEMC)

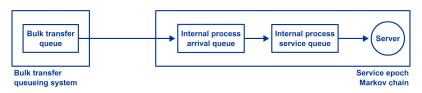
Two queues, two problems

- Two phases in a patients treatment process:
 - External phase (e.g. at home)
 - Internal phase (e.g. at the doctor's office)
- Division of the problem into 2 subproblems:
 - Bulk Transfer Queueing System (BTQS)
 - Service Epoch Markov Chain (SEMC)

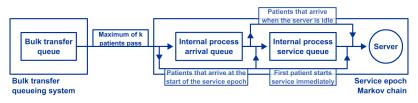


- At the beginning of each service epoch a number of patients is transferred from the BTQS to the SEMC
- The SEMC has two queues:
 - Internal process arrival queue, which holds patients who have yet to arrive
 - Internal process service queue, which represents the waiting room at the doctor's office

- At the beginning of each service epoch a number of patients is transferred from the BTQS to the SEMC
- The SEMC has two queues:
 - Internal process arrival queue, which holds patients who have yet to arrive
 - Internal process service queue, which represents the waiting room at the doctor's office



- At the beginning of each service epoch a number of patients is transferred from the BTQS to the SEMC
- The SEMC has two queues:
 - Internal process arrival queue, which holds patients who have yet to arrive
 - Internal process service queue, which represents the waiting room at the doctor's office



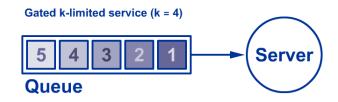
- At the beginning of each service epoch a number of patients is transferred from the BTQS to the SEMC
- The SEMC has two queues:
 - Internal process arrival queue, which holds patients who have yet to arrive
 - Internal process service queue, which represents the waiting room at the doctor's office
- Performance measures of both systems are derived separately and are joined together afterwards

- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations

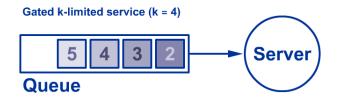
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations

VACATION	VACATION	VACATION		
Thursday	Friday	Friday		

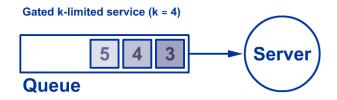
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



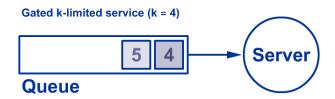
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



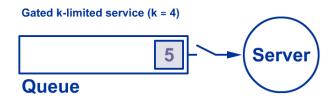
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



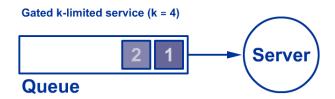
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



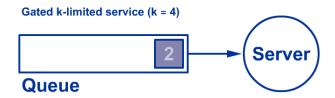
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



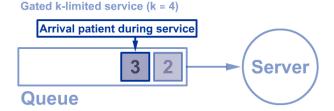
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



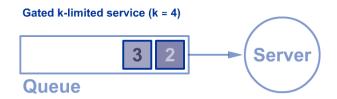
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



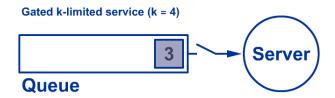
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



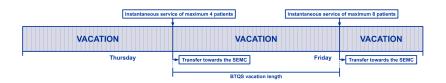
- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations

- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations

- The BTQS is a vacation model
 - Gated, k-limited service discipline
 - Bulk service queue with instantaneous service
 - After service patients are transferred towards the SEMC
 - State dependent, deterministic vacations



Example

- One service epoch (e.g. Thursday from 6 PM until 8 PM)
- Maximum of 4 patients is allowed
- Arrival rate λ , vacation rate μ

i/j	0	1	2	3	4	5	6	7	
0	μ	λ	0	0	0	0	0	0	
1	μ	0	λ	0	0	0	0	0	
2	μ	0	0	λ	0	0	0	0	
3	μ	0	0	0	λ	0	0	0	
4	μ	0	0	0	0	λ	0	0	
5	0	μ	0	0	0	0	λ	0	
6	0	0	μ	0	0	0	0	λ	
7	0	0	0	μ	0	0	0	0	

BTQS: underlying Markov chain

Output

From the analysis of the BTQS we obtain:

- The stationary distribution of the number of patients in queue
- The waiting time of a patient at the BTQS (i.e. part of the waiting time spent in the waiting list)
- The probability of a certain number of patients being transferred towards the SEMC at the beginning of a particular service epoch (i.e. the input of the SEMC system)

The SEMC is an absorbing Markov chain in which:

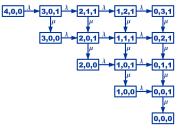
- Each state is represented by a triplet $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ where:
 - A denotes the number of patients in the internal process arrival queue
 - B denotes the number of patients in the internal process service queue
 - ullet C denotes the number of patients currently in service
- The absorption time indicates the end of service at a service epoch

Example

- One service epoch on Thursday (from 6 PM until 8 PM)
- 4 patients made an appointment
- none of the patients are present at the doctor's office upon opening
- Arrival rate at the doctor's office λ , service rate μ

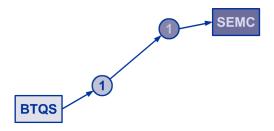
Example

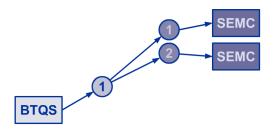
- One service epoch on Thursday (from 6 PM until 8 PM)
- 4 patients made an appointment
- none of the patients are present at the doctor's office upon opening
- Arrival rate at the doctor's office λ , service rate μ

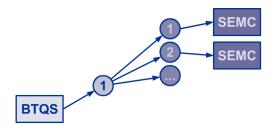


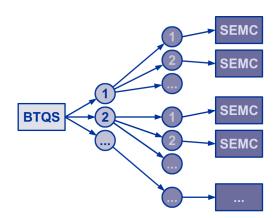
Output

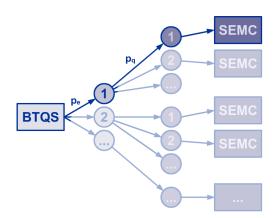
- From the analysis of the SEMC we obtain:
 - The overtime performed at a particular service epoch, given a number of patients transferred from the BTQS
 - The waiting time at both the internal process arrival and service queue at a particular service epoch, given a number of patients transferred from the BTQS
- For each service epoch and each possible number of patients transferred, we need to analyze the SEMC
- Combined with the performance measures of the BTQS, general performance measures may be obtained











Assumptions

- Use of exponential distribution:
 - Vacation length
 - Service times
 - Interarrival times at the doctor's office
 - Interarrival times between appointments
- Patients:
 - Are assumed to make an appointment (i.e. no unscheduled patients show up)
 - Are assigned the first time slot available
 - Are assumed to arrive and to be served during the assigned service epoch

Numerical example

- Setting: doctor's office with opening hours on Thursday (6 PM until 8 PM; a maximum of 4 patients may be treated)
- Assumptions:
 - Vacation lengths of exponential duration (168 hours)
 - Exponential service time with mean 30 minutes
 - Exponential interarrival time at the waiting list with mean 3,000 minutes
 - Exponential interarrival time at the doctor's office with mean 18 minutes

Numerical example

Parameter		Exact	Simulation
$E[W_{\alpha}]$	=	40,768 minutes	40,759 minutes
$E[W_{\beta}]$	=	$38.625 \; \mathrm{minutes}$	$38.627 \; \mathrm{minutes}$
$E[W_{\gamma}]$	=	$20.999 \; \mathrm{minutes}$	$21.003 \; \mathrm{minutes}$
E[W]	=	40,828 minutes	40,818 minutes
E[O]	=	$23.894 \; \mathrm{minutes}$	$23.908 \; \mathrm{minutes}$

Conclusions

Contributions:

- Modeling technique that enables the assessment of:
 - Staff overtime
 - Patient waiting time at the waiting list
 - Patient waiting time at the internal facility

Current limitations:

- Use of exponential distribution for vacation lengths and interarrival and service times
- More efficient computation of performance measures is possible
- Various extensions should allow for more realistic models (e.g. unscheduled patients, multiple doctors, ...)

Upcoming research

- Use of Phase Type distributions to obtain:
 - More realistic models; Phase Type distributions can be used to model a wide variety of existing distributions
 - More detailed performance measures (i.e. not limited to expected values)
- Use of Matrix analytical techniques to optimize computations
- Provide various extensions to the model (unscheduled patients, multiple doctors, ...)
- Assess impact of size and location of service epochs on performance measures

Time for questions

