Queueing models for appointment-driven systems

Stefan Creemers and Marc Lambrecht

Research Center for Operations Management

Catholic University Leuven

July 28, 2008

< □ > < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

Problem setting Performance measures Modeling approach Overview research

Problem setting: example doctor's office

- Opening hours on Thursday from 6PM until 8PM and on Friday from 2PM until 6PM
- On Thursday a maximum of 4 patients is served, on Friday up to 8 patients receive service

Problem setting Performance measures Modeling approach Overview research

Problem setting: example doctor's office

- Opening hours on Thursday from 6PM until 8PM and on Friday from 2PM until 6PM
- On Thursday a maximum of 4 patients is served, on Friday up to 8 patients receive service

4 patients scheduled on Thursday in week 1

Problem setting Performance measures Modeling approach Overview research

Problem setting: example doctor's office

- Opening hours on Thursday from 6PM until 8PM and on Friday from 2PM until 6PM
- On Thursday a maximum of 4 patients is served, on Friday up to 8 patients receive service

8 patients scheduled on Friday in week 1

Problem setting Performance measures Modeling approach Overview research

Problem setting: example doctor's office

- Opening hours on Thursday from 6PM until 8PM and on Friday from 2PM until 6PM
- On Thursday a maximum of 4 patients is served, on Friday up to 8 patients receive service

Problem setting Performance measures Modeling approach Overview research

Problem setting: example doctor's office

- Opening hours on Thursday from 6PM until 8PM and on Friday from 2PM until 6PM
- On Thursday a maximum of 4 patients is served, on Friday up to 8 patients receive service

Patient scheduled on Thursday in week 2

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

(a)

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

イロト イポト イヨト イヨト

э

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

イロン 不同 とくほう イロン

э

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

イロト イポト イヨト イヨト

э

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

イロト イポト イヨト イヨト

-

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

イロン 不同 とくほう イロン

-

Problem setting Performance measures Modeling approach Overview research

Problem setting: patient point of view

Main measures of interest:

- Patient waiting time at the waiting list
- Patient waiting time during a service session

- 4 同 6 4 日 6 4 日 6

Problem setting Performance measures Modeling approach Overview research

Problem setting: server point of view

Service only takes place during service sessions

直 と く ヨ と く ヨ と

NO SERVICE	₽ X	•	₽ X	₽,	NO SERVICE
------------	--------	---	--------	----	------------

Main measures of interest:

Problem setting Performance measures Modeling approach Overview research

Problem setting: server point of view

Patient fails to show up and no other patient is waiting

э

Main measures of interest:

• Server idle time

Problem setting Performance measures Modeling approach Overview research

Problem setting: server point of view

No patients left to service at the end of a service session

(日) (同) (三) (三)

Main measures of interest:

- Server idle time
- Unused server capacity at the end of a service session

Problem setting Performance measures Modeling approach Overview research

Problem setting: server point of view

Service takes longer than expected

イロト イポト イヨト イヨト

Main measures of interest:

- Server idle time
- Unused server capacity at the end of a service session
- Server overtime

Problem setting Performance measures Modeling approach Overview research

Problem setting: performance measures

- Measures of interest:
 - Patient-related measures:
 - Patient waiting time at the waiting list
 - Patient waiting time at the doctor's office
 - Server-related measures:
 - Unused server capacity
 - Server idle time
 - Server overtime
- These performance measures can be used in an optimization procedure to aid strategic decision-making:
 - Optimal location in space and time of service sessions
 - Optimal number of patients to be treated during each service session
- Currently no models are available that provide all of these performance measures

Problem setting Performance measures Modeling approach Overview research

Two queues, two models

- In appointment-driven systems, patients join two queues:
 - The waiting list
 - The queue at the service facility
- Both queues are modeled using distinct models
 - A vacation model (AMQ), that regulates the assignment of patients to service sessions

- An appointment system (AS), that models everything that happens during the service session itself
- Combining results of both models allows the assessment of performance measures at an appointment-driven system as a whole

Problem setting Performance measures Modeling approach Overview research

Appointment system (AS)

- During a service session, how should patients be scheduled in order to optimize:
 - Patient waiting time at the service facility
 - Staff performance (overtime, idle time, unused capacity)
- Two approaches:
 - Procedures to obtain (optimal) interarrival times of patients
 - Appointment scheduling rules (ASR)

Problem setting Performance measures Modeling approach Overview research

We obtain:

- Waiting list performance measures
- Distribution of the number of patients present at the start of a service session

Problem setting Performance measures Modeling approach Overview research

Myopic separately, Global combined

- Separately only a myopic view is offered:
 - The AMQ only observes the waiting list
 - The AS only observes a realization of a single service session
- Together they describe the appointment-driven system
 Stefan Creemers and Marc Lambrecht
 Queueing models for appointment-driven systems

Problem setting Performance measures Modeling approach Overview research

Myopic separately, Global combined

- Separately only a myopic view is offered:
 - The AMQ only observes the waiting list
 - The AS only observes a realization of a single service session

Problem setting Performance measures Modeling approach Overview research

- Separately only a myopic view is offered:
 - The AMQ only observes the waiting list
 - The AS only observes a realization of a single service session

Problem setting Performance measures Modeling approach Overview research

Overview research

Queueing models for appointment-driven systems Creemers S. and Lambrecht M.R. (2008) First round of revision in Annals of OR

(日) (同) (日) (日) (日)

Problem setting Performance measures Modeling approach Overview research

Overview research

Advanced queueing models for appointment-driven systems Creemers S. and Lambrecht M.R. (2008)

(a)

Introduction Appointment System Appointment assignment system General results Numerical example

(日) (同) (三) (三)

First model overview

Queueing models for appointment-driven systems Creemers S. and Lambrecht M.R. (2008) Accepted for publication in Annals of OR

Introduction Appointment System Appointment assignment system General results Numerical example

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First model overview

Queueing models for appointment-driven systems Creemers S. and Lambrecht M.R. (2008) Accepted for publication in Annals of OR

Introduction Appointment System Appointment assignment system General results Numerical example

AS: Problem setting

- Problem setting: during a single service session, schedule a set of patients as to optimize some some performance measures
- Appointment Scheduling Rule (ASR): block appointment rule
- Performance measures:
 - Patient waiting time at the service facility
 - Server overtime
 - Server idle time
 - Unused server capacity
- Methodology: closed form results due to the use of the gamma distribution to model the service process

Introduction Appointment System Appointment assignment system General results Numerical example

イロト イポト イヨト イヨト

AS: Assumptions

- Block appointment rule (i.e. all patients arrive at the start of the service session)
- Patients all show up and arrive on time
- All patients in the service session are served
- Patient service time distribution is assumed to be i.i.d.
- Patient service time distribution is approximated using a gamma distribution of parameters α and θ (which matches the first two moments)
- Service takes place in an uninterrupted fashion

Introduction Appointment System Appointment assignment system General results Numerical example

AS: Model

- Patient waiting time is maximized, staff overtime is minimized (there is no idle time)
- The uninterrupted duration of servicing n patients follows a gamma distribution of parameters $n\alpha$ and θ
- We obtain closed form results for average overtime performed (E[φ_n]) and average waiting time (E[W_{AS}]):

$$\begin{split} E[\phi_n] &= \frac{[-O\gamma(n\alpha, O/\theta)] + \left[O^{n\alpha} \left(\frac{O}{\theta}\right)^{-n\alpha} \theta^{1-n\alpha} \gamma(1+n\alpha, O/\theta)\right]}{\Gamma(n\alpha)},\\ E[W_{AS}] &= \frac{n-1}{2\mu}, \end{split}$$

where:

- O indicates when the server works overtime
- μ is the service rate of a single patient

Introduction Appointment System Appointment assignment system General results Numerical example

AS: Example

- Input parameters:
 - A maximum of 4 patients are to be served in a duration of 120 minutes (i.e. n = 4 and O = 120)
 - Service of an individual patient takes on average half an hour (i.e. $\mu={\rm 1/30})$
 - SCV of service times equals 2/3
- Results (validated through simulation):

n	0	1	2	3	4
P(n)	0.1	0.2	0.2	0.2	0.3
$E[\phi_n]$	0	0.1577	1.6360	7.1308	19.275
$E[W_{AS}]$	0	0	15	30	45

- Mean overtime over all AS: 7.57 minutes
- Mean patient waiting time over all AS: 22.5 minutes

Introduction Appointment System Appointment assignment system General results Numerical example

AS: Output

- For a given number of patients served at a given service session we obtain:
 - The average waiting time of a patient at the service facility
 - The average amount of overtime performed
 - The average amount of idle time (which always equals zero in our AS)
- In order to obtain general results at the appointment-driven system, these data need to be aggregated using the probability distribution obtained at the AMQ

Introduction Appointment System Appointment assignment system General results Numerical example

(日) (同) (三) (三)

First model overview

Queueing models for appointment-driven systems Creemers S. and Lambrecht M.R. (2008) Accepted for publication in Annals of OR

Introduction Appointment System Appointment assignment system General results Numerical example

< ロ > < 同 > < 三 > < 三 > 、

AMQ: Problem setting

- Problem setting: assigning patients to the first available service session
- Performance measures:
 - · Average number of patients in the waiting list
 - Distribution of the number of patients present in queue at the start of a particular service session (i.e. the probability of having an AS with *n* patients to be served)
- Methodology: vacation model and matrix analytical techniques to obtain the stationary distribution of the corresponding CTMC (Continuous Time Markov Chain)

Introduction Appointment System Appointment assignment system General results Numerical example

AMQ: Assumptions

- Time-independent, Poisson arrivals that are allowed to occur at any time
- Gated k-limited service discipline
- Bulk service queue with instantaneous service
- State-dependent, deterministic, cyclic vacations

Introduction Appointment System Appointment assignment system General results Numerical example

AMQ: Assumptions

- Time-independent, Poisson arrivals that are allowed to occur at any time
- Gated k-limited service discipline
- Bulk service queue with instantaneous service
- State-dependent, deterministic, cyclic vacations

\rightarrow	< 148h →	< 20h →	. < 148h	<mark>>< 20h</mark>
	VACATION	VACATION _{j+1}	VACATION	VACATIO
	Friday 2PM	Thursday 6PM	Friday 2PM	Thursday 6PM
Instantaneous Ins service of k _j set patients pa		tantaneous Ins rvice of k _{j+1} se tients pa	f stantaneous Ir rvice of k _i s tients p	▼ nstantaneous ervice of k _{j+1} atients

Introduction Appointment System Appointment assignment system General results Numerical example

イロト イポト イヨト イヨト

3

AMQ: basic idea of the model

i/j	0	1	2	3	4	5	6	7	
0	μ	λ	0	0	0	0	0	0	
1	μ	0	λ	0	0	0	0	0	
2	μ	0	0	λ	0	0	0	0	
3	μ	0	0	0	λ	0	0	0	
4	μ	0	0	0	0	λ	0	0	
5	0	μ	0	0	0	0	λ	0	
6	0	0	μ	0	0	0	0	λ	
7	0	0	0	μ	0	0	0	0	

With:

- μ the rate until the next vacation
- λ the arrival rate

Introduction Appointment System Appointment assignment system General results Numerical example

B b d B b

AMQ: model

- Use of Erlang distribution of sufficient phases to model the deterministic vacation durations
- Threedimensional stochastic process X = {X(t) : t ≥ 0}
- The statespace may be represented by triplets (Q, j, v) where:
 - Q is the queue size,
 - *j* is the type of vacation (e.g. Thursday or Friday)
 - v is the phase of the vacation process
- Possible transitions:
 - Arrival of a new patient: (Q, j, v)
 ightarrow (Q+1, j, v)
 - End of a vacation:

$$(Q, j, V+1) \rightarrow (max((Q-k_j), 0), j+1, 1)$$

Introduction Appointment System Appointment assignment system General results Numerical example

AMQ: model

 Infinitesimal generator **Q** is endowed with a QBD (Quasi-Birth-Death) structure:

$$\mathbf{Q} = \begin{bmatrix} \hat{L} & F & 0 & 0 & 0 & \cdots \\ B & L & F & 0 & 0 & \cdots \\ 0 & B & L & F & 0 & \cdots \\ 0 & 0 & B & L & F & \cdots \\ 0 & 0 & 0 & B & L & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix},$$

where ${\bf 0}$ is a matrix of appropriate size containing only zeros and where ${\bf \hat L},~{\bf L},~{\bf F}$ and ${\bf B}$ are the respective "local", "forward" and "backward" transition rate matrices

• The stationary distribution of such structured CTMC is efficiently obtained using matrix analytical techniques

Introduction Appointment System Appointment assignment system General results Numerical example

< ロ > < 同 > < 三 > < 三 > 、

AMQ: Output

- The average patient waiting time at the waiting list
- The distribution of the number of patients present at the start of a particular service session (e.g. on Thursday or on Friday)
- Combined with the analysis of the AS that correspond to those service session realizations (with non-zero probability), general results for an appointment-driven system are obtained.

Introduction Appointment System Appointment assignment system General results Numerical example

э

Introduction Appointment System Appointment assignment system General results Numerical example

э

Introduction Appointment System Appointment assignment system General results Numerical example

э

Introduction Appointment System Appointment assignment system General results Numerical example

イロト イポト イヨト イヨト

э

Introduction Appointment System Appointment assignment system General results Numerical example

Appointment-driven system: General results

Stefan Creemers and Marc Lambrecht

Queueing models for appointment-driven systems

Introduction Appointment System Appointment assignment system General results Numerical example

Appointment-driven system: General results

Introduction Appointment System Appointment assignment system General results Numerical example

Appointment-driven system: General results

Stefan Creemers and Marc Lambrecht

Queueing models for appointment-driven systems

Introduction Appointment System Appointment assignment system General results Numerical example

< ロ > < 同 > < 三 > < 三 > 、

Appointment-driven system: Example

- Doctor's office with opening hours on Thursday from 6PM until 8PM and on Friday from 2PM until 6PM
- On Thursay a maximum of 4 patients receives service, on Friday a maximum of 8 patients is served
- On average 8 patients arrive each week (arrivals follow a Poisson distribution)
- AS remains unchanged (i.e. a block appointment rule with mean service time of 30 minutes and a SCV of ²/₃)

V	$E[W_{AMQ}]$	$E[W_{AS}]$	p_{ϕ}	$E[\phi]$
10	5,126.9400	105.9466	0.1979	10.0794
50	4,440.3660	106.5436	0.1882	9.5996
100	4,360.2300	106.6709	0.1868	9.5329
200	4,320.7920	106.7410	0.1861	9.4991
∞	4,281.3099	106.8222	0.1852	9.4721

Introduction Appointment System Appointment assignment system General results Numerical example

Conclusions

- Contribution:
 - One of the few models that are able to assess:
 - Patient waiting time at the waiting list
 - Patient waitign time at the service facility
 - Staff overtime (and overtime probability)
 - Staff idle time
 - Unused staff capacity
 - Resulting performance measures are of sufficient accuracy
 - Performance measures can be used to address strategical issues
- Model limitations:
 - Rather simple AS (block appointment rule)
 - Time-independent, Poisson arrival process

Introduction Modeling approach The DTMC X_j The DTMC X_j* General results Numerical Example

Second model overview

Advanced queueing models for appointment-driven systems Creemers S. and Lambrecht M.R. (2008)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Modeling approach The DTMC X_j The DTMC X_j* General results Numerical Example

Comparison with previous AMQ model

- Relaxed assumptions:
 - Arrivals are no longer assumed to follow a Poisson process, the first two moments of the interarrival time distribution are matched using a phase type distribution
 - Patients are only allowed to arrive during arrival sessions (e.g. during office hours on weekdays).
 - Different arrival session are allowed to feature different interarrival time distributions (i.e. time-dependent arrivals)
- Performance: increased accuracy and computional performance
- Methodology: set of DTMC (Discrete Time Markov Chain) analyzed using matrix analytical methods

Introduction Modeling approach The DTMC X_j : The DTMC X_j^* General results Numerical Example

Vacation classes

- Due to the incorporation of arrival sessions, we make a distinction between 5 different classes of arrivals
- A new vacation is initiated whenever:
 - A service session starts
 - An arrival session starts
 - An arrival session ends
- Each vacation class requires a distinct modeling approach

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Modeling approach The DTMC X_j : The DTMC X_j^* : General results Numerical Example

Vacation classes

ARRIVAL	ARRIVAL	ARRIVAL	ARRIVAL	
SESSION	SESSION	SESSION	SESSION	
j	j+1	j	j+1	

Stefan Creemers and Marc Lambrecht Queueing models for appointment-driven systems

æ

Introduction **Modeling approach** The DTMC X_j The DTMC X_j^* General results Numerical Example

Vacation classes

イロン 不同 とくほう イロン

3

Introduction **Modeling approach** The DTMC X_j : The DTMC X_j^* General results Numerical Example

Vacation classes

イロン 不同 とくほう イロン

3

Introduction **Modeling approach** The DTMC X_j The DTMC X_j^* General results Numerical Example

Division into two sets of DTMC

 Reduces complexity of the DTMC to be analyzed (i.e. it is more efficient to analyze a number of smaller DTMC as compared to analyzing one large DTMC)

ロト (得) (手) (手)

• Increased model flexibility and accuracy

Introduction Modeling approach **The DTMC** X_j The DTMC X_j* General results Numerical Example

The DTMC X_j : Introduction

- DTMC X_j observes the status of the queue only at the start of vacations of type j
- Analysis of the DTMC X_j yields the stationary distribution of the number of patients in queue at the start of a vacation of type j

Introduction Modeling approach **The DTMC** X_j The DTMC X_j* General results Numerical Example

The DTMC X_j : Illustration

Stefan Creemers and Marc Lambrecht Queueing models for appointment-driven systems

Introduction Modeling approach **The DTMC** X_j The DTMC X_j* General results Numerical Example

The DTMC X_j : Modeling issue

- Origin: a DTMC X_j observes the queue only at the start of vacations of type j
- Issue: Any alterations of the queue in between observation moments are left unobserved (i.e. we need to take these alterations into account)
- Solution: Determine the probability to move from a given state at the start of a vacation type *j* towards a state at the next vacation of type *j*
- Solution procedure:
 - A counting process allows the exact computation of the probability of having a number of arrivals during a given vacation *i* of deterministic duration *T_i*
 - These probabilities are the input of an efficient algorithm that determines the required probabilities

Introduction Modeling approach **The DTMC** X_j The DTMC X_j* General results Numerical Example

The DTMC X_j : Model

- Probabilities obtained from the algorithm are the only input of the DTMC X_j
- The DTMC X_j is twodimensional and its statespace may be represented by pairs (Q, a) where:
 - Q indicates the queue size
 - *a* indicates the phase of the arrival process (phase type)
- The transition matrix **Q**_j is of upper block Hessenberg form:

$$\mathbf{Q}_{j} = \begin{bmatrix} \mathbf{L}_{j} & \mathbf{F}_{j}^{(1)} & \mathbf{F}_{j}^{(2)} & \mathbf{F}_{j}^{(3)} & \mathbf{F}_{j}^{(4)} & \dots \\ \mathbf{B}_{j} & \mathbf{L}_{j} & \mathbf{F}_{j}^{(1)} & \mathbf{F}_{j}^{(2)} & \mathbf{F}_{j}^{(3)} & \dots \\ \mathbf{0} & \mathbf{B}_{j} & \mathbf{L}_{j} & \mathbf{F}_{j}^{(1)} & \mathbf{F}_{j}^{(2)} & \dots \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{j} & \mathbf{L}_{j} & \mathbf{F}_{j}^{(1)} & \dots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{j} & \mathbf{L}_{j} & \dots \\ \dots & \dots & \dots & \dots & \dots & \ddots \end{bmatrix}$$

Introduction Modeling approach The DTMC X; **The DTMC X;** General results Numerical Example

The DTMC X_i^* : Introduction

- DTMC X_j^{*} observes the queueing behavior of patients arriving at a vacation of type j
- From X_j^{*} we obtain the stationary distribution of the patients in queue that were not already present in queue at the start of the vacation of type j (those patients are already accounted for in DTMC X_j)

< ロ > < 同 > < 回 > < 回 >

Introduction Modeling approach The DTMC X_j **The DTMC X_j*** General results Numerical Example

- Measure of interest: average queue size of only those patients that were not present at the start of the vacation
- Methodology: a resetting DTMC that can be analysed using matrix analytical techniques

Introduction Modeling approach The DTMC X_j **The DTMC X_j*** General results Numerical Example

- Measure of interest: average queue size of only those patients that were not present at the start of the vacation
- Methodology: a resetting DTMC that can be analysed using matrix analytical techniques

Introduction Modeling approach The DTMC X_j **The DTMC X_j*** General results Numerical Example

The DTMC X_j^* : Model

- The DTMC X_j^* is threedimensional and its statespace may be represented by pairs (Q, a, v) where:
 - Q indicates the queue size
 - *a* indicates the phase of the arrival process (phase type)
 - *v* indicates the phase of the vacation process (Erlang)
- The transition matrix **Q**^{*}_j is of lower block Hessenberg form:

$$\mathbf{Q}_{j}^{*} = \begin{bmatrix} \hat{\mathbf{L}}_{j}^{*} & \mathbf{F}_{j}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots \\ \mathbf{B}_{j}^{*} & \mathbf{L}_{j}^{*} & \mathbf{F}_{j}^{*} & \mathbf{0} & \mathbf{0} & \dots \\ \mathbf{B}_{j}^{*} & \mathbf{0} & \mathbf{L}_{j}^{*} & \mathbf{F}_{j}^{*} & \mathbf{0} & \dots \\ \mathbf{B}_{j}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{L}_{j}^{*} & \mathbf{F}_{j}^{*} & \dots \\ \mathbf{B}_{j}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{L}_{j}^{*} & \dots \\ \dots & \dots & \dots & \dots & \dots & \ddots \end{bmatrix}$$

(日) (同) (三) (三)

Introduction Modeling approach The DTMC X_i The DTMC X_i^* General results Numerical Example

Combining both sets of DTMC

- Output:
 - DTMC X_j provides us with the stationary distribution of the queue size at the start of a vacation of type j
 - DTMC X_j^{*} provides us with the stationary queue size of those patients that arrived during a vacation of type j (i.e. those patients that were not already in queue at the start of the vacation)
- Adding the average queue size at the start of a vacation of type j (\overline{X}_j) and the average queue size of arriving patients (\overline{X}_j^*) yields the average queue size at a vacation of type j.
- Aggregating over all vacation types j allows the assessment of performance measures at the AMQ as a whole

Introduction Modeling approach The DTMC X_j The DTMC X_j* General results **Numerical Example**

Numerical example

- Service sessions take place on Thursday at 12AM (), and on Friday at 7AM and 12AM.
- Arrival sessions are installed on Thursday from 6AM until 6 PM and on Friday from 7AM until 12AM:
 - On Thursday interarrivals are highly variable with a mean hourly rate of 1/3 and a SCV equal to 2
 - On Friday interarrivals are much less variable with a mean hourly rate of 1/5 and a SCV equal to 0.68
- The resulting vacation cycle consists of 5 vacations which can be characterized as follows:

j	cj	Tj	kj
1	3	6	0
2	5	6	3
3	1	13	0
4	4	5	1
5	2	138	2

(日) (同) (三) (三)

Introduction Modeling approach The DTMC X_j The DTMC X_j* General results Numerical Example

Numerical example

Individual vacations:

j	Q_i	
	Model $V = 200$	Simulation
1	6.0362	6.0266
2	5.5505	5.5648
3	6.5528	6.5848
4	5.6633	5.6661
5	4.7401	4.7428

- The AMQ as a whole:
 - Average queue size: 4.9941 (simulation: 4.9989)
 - Average waiting time (weeks): 0.9419 (simulation: 0.9453)

< ロ > < 同 > < 三 > < 三 > 、

Introduction Modeling approach The DTMC X_j The DTMC X_j^* General results Numerical Example

Conclusions

- Renders the previous AMQ model virtually obsolete:
 - Computationally less burdensome
 - Increased model accuracy
 - Relaxed assumptions
 - Increased model flexibility
- Limitations:
 - The time-dependent character of the arrival process might be modelled in a more proficient fashion
 - There probably exists a more efficient way to obtain the required performance measures at the DTMC X^{*}_i

(日) (同) (目) (日)

Conclusions and future research Questions

同 ト イヨ ト イヨ ト

-

Conclusions and future research

Stefan Creemers and Marc Lambrecht Queueing models for appointment-driven systems

Conclusions and future research Questions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Contributions and limitations

- Contributions:
 - Development of new queueing models that allow the detailed study of appointment-driven systems:
 - Strategic important performance measures: patient waiting time (internal as well as external), staff performance (overtime, idle time, unused capacity)
 - Input for an optimization procedure
- Limitations:
 - Use of rather simple AS
 - No optimization yet
 - Time-dependent arrival process may be made more general

Conclusions and future research Questions

・ロト ・同ト ・ヨト ・ヨト

Future research

• Determining a good AS

. . .

- Based on the Welch-Bailey appointment rule (which has been found to perform very well among different ASR)
- More than just a myopic analysis of an AS
- Development of an optimization procedure to answer strategic questions such as:
 - How many service sessions should be installed
 - What should be the size of these service sessions
 - How many patients should be allowed in each service session
 - Where in time should service and arrival sessions be installed
Introduction A first model A second model Conclusions

Conclusions and future research Questions

・ 戸 と ・ ヨ と ・ モ と …

э

Time for questions

