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Problem Description
Model

Results

Markov PERT Networks
NPV-Objective in Stochastic Project Networks
Contribution

Markov and Markov-regenerative PERT networks
Kulkarni V.G. and Adlaka V.G.
Operations Research (1986) Vol. 34(5) pp.769-781

• PERT networks with independent exponentially
distributed activity durations

• Project execution is a Continuous Time Markov Chain
with a single absorbing state (i.e. project completion)

• Early-start policy is optimal
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Markov PERT Networks
NPV-Objective in Stochastic Project Networks
Contribution

NPV is a nonregular measure of performance, starting
activities as soon as possible is not necessarily optimal

Extensive body of literature exists on the deterministic case:

• A.H. Russell (1970)

• R.C. Grinold (1972)

• S. Elmaghraby and W. Herroelen (1990)

• R.H. Möhring, A.S. Schulz, F. Stork and M. Uetz (2001)

• C. Schwindt and J. Zimmermann (2001)

Stefan Creemers, Marc Lambrecht, Roel Leus Scheduling Markovian PERT networks with maximum-NPV objective



Problem Description
Model

Results

Markov PERT Networks
NPV-Objective in Stochastic Project Networks
Contribution

Activity Delay in Stochastic Project Networks
Buss A.H. and Rosenblatt M.J.
Operations Research (1997) Vol. 45(1) pp. 126-139

• Algorithms to determine delays at the onset of the project
(i.e. static decisions)

• Early-start policy after delay

• Performance limited to 25-activity networks
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Contribution

Scheduling projects with stochastic activity duration to
maximize EPV
Tilson V., Sobel M.J. and Szmerekovsky J.G.
Submitted Working Paper (2006)

• Optimization over the set of policies that start activities
at the end of other activities (dynamic)

• Process is a Continuous Time Markov Decision Chain

• Performance limited to 25-activity networks
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Markov PERT Networks
NPV-Objective in Stochastic Project Networks
Contribution

Our contribution:

Significant improvement of performance compared to existing
models:

• CPU-time reduction up to factor 15

• Memory requirement reduction up to factor 360 (largest
statespace analyzed: 867,589,281 states)
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Results

Definition of the Statespace
Dynamic Program

Setting:

• Stochastic activity durations (exponentially distributed)

• Expected NPV-objective: incurred cash flow ci at the
start of activity i

• Optimization over all policies that start activities at the
end of other activities

• No resources

Model outline:

• Definition of the statespace

• Dynamic program to obtain optimal NPV
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Definition of the Statespace
Dynamic Program

Preliminary Concepts

Status of activity i at time t:

• not started Ωi(t) = 0

• in progress Ωi(t) = 1

• finished Ωi(t) = 2

Ω(t) = (Ω0(t), Ω1(t), . . . , Ωn(t)) defines the state of the
system

Size of statespace Q has upper bound |Q| = 3n

Most of these states do not satisfy precedence constraints
⇒ Strict and clear definition of the statespace is essential
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Definition of the Statespace
Dynamic Program

Example of a Feasible State

Feasible state Ω = (2, 2, 2, 1, 2, 1, 1, 0, 1, 0, 0, 0)
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Definition of the Statespace
Dynamic Program

Example of an Infeasible State

Infeasible state Ω = (2, 2, 2, 1, 2, 1, 1, 0, 1, 0, 0, 1)
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Definition of the Statespace
Dynamic Program

The UDC-concept

A UDC is an inclusion-maximal set of activities that can be
executed in parallel at a given moment in time

Traditionally used in AoA representation, we apply the concept
in AoN representation
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Definition of the Statespace
Dynamic Program

The UDC-network

State Ω = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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Definition of the Statespace
Dynamic Program

The UDC-network

State Ω = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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Problem Description
Model
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Definition of the Statespace
Dynamic Program

The UDC-network

State Ω = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Lemma 1. Each feasible state is assigned to a single UDC
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Definition of the Statespace
Dynamic Program

The UDC-network

State Ω = (2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
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Problem Description
Model

Results

Definition of the Statespace
Dynamic Program

The UDC-network

State Ω = (2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)

Lemma 2. If at least one new activity becomes eligible then
the system moves to a different UDC
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The UDC-network

State Ω = (2, 2, 1, 0, 2, 2, 0, 0, 0, 0, 0, 0)

Lemma 3. Inter-UDC-transitions can only lead from lower- to
higher-ranked UDCs
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Definition of the Statespace
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The UDC-network

State Ω = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0)

Observation 1. Note that the assignment of states to UDCs
establishes a partition of Q
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Algorithm Global algorithmic structure
Generate the UDC-network
Let NPV at state Ω = (2, 2, . . . , 2, 0) equal cn

For all UDCs in decreasing rank
Allocate storage for all states in the UDC
For all states

Determine optimal decision and compute NPV (SDP-recursion)
End For
For all UDCs that are linked to the current UDC

Reduce the number of incoming links
If there are no more incoming links

Free storage occupied by the UDC
End If

End For
End For
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Lemma 4. For an arbitrary UDC, in any state, the backward
recursion only needs value-function lookups within higher
ranked UDCs or within the same UDC for states which have
already been evaluated.
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Results

Comparison with existing models
Computational Results
Memory Efficiency
Time for Questions

Tilson et al. Creemers et al.
Configuration Intel Pentium IV AMD Athlon 64
Clock Speed 2.8GHz 1.8GHz
PCMark∗ (CPU) 3, 646 2, 602
RAM 512MB 2, 048MB
CPU time 210 sec 14 sec
Max statespace 600, 000 268, 435, 456

(867, 589, 281)

CPU time reduction: factor 15 (uncorrected)
Memory reduction: factor 360 (corrected)

∗CPU benchmarking tool: http://www.futuremark.com/
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Comparison with existing models
Computational Results
Memory Efficiency
Time for Questions

N Ns Average statespace size
OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 30 30 30 71 206 695
20 30 30 30 484 4, 006 55, 016
30 30 30 30 1, 995 49, 388 1, 560, 364
40 30 30 29 7, 860 534, 014 47, 072, 515
50 30 30 4 26, 667 4, 346, 215 526, 020, 237
60 30 30 0 92, 003 216, 027, 815
70 30 22 0 286, 831 216, 027, 815
80 30 5 0 829, 741 758, 644, 207
90 30 0 0 2, 596, 419
100 30 0 0 6, 868, 100
110 30 0 0 24, 235, 588
120

N Avg CPU Time NPV Max CPU Time NPV
OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 0.00 0.00 0.00 0.00 0.00 0.03
20 0.00 0.03 0.90 0.00 0.08 3.77
30 0.01 0.64 52.98 0.02 1.78 326.16
40 0.06 13.29 4, 273 0.11 51.72 19, 916
50 0.27 171.56 99, 216 0.66 849.42 132, 984
60 1.28 0.00 5.30 0.00
70 5.37 33, 203 15.52 114, 424
80 19.13 124, 831 73.09 145, 922
90 86.86 538
100 301 1, 626
110 1, 774 19, 571
120
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Problem Description
Model

Results

Comparison with existing models
Computational Results
Memory Efficiency
Time for Questions

N Average statespace size Maximum statespace size
OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 71 206 695 105 333 2, 361
20 484 4, 006 55, 016 953 7, 673 153, 441
30 1, 995 49, 388 1, 560, 364 3, 233 84, 837 5, 966, 721
40 7, 860 534, 014 47, 072, 515 11, 945 1, 543, 113 146, 560, 473
50 26, 667 4, 346, 215 526, 020, 237 53, 481 13, 893, 741 737, 047, 953
60 92, 003 42, 278, 506 236, 889 165, 102, 585
70 286, 831 216, 027, 815 605, 649 426, 644, 253
80 829, 741 758, 644, 207 2, 278, 353 867, 589, 281
90 2, 596, 419 9, 322, 153
100 6, 868, 100 22, 963, 321
110 24, 235, 588 117, 261, 489
120

N Maximum statespace use Average statespace use
OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 0.41 0.55 0.63 0.25 0.37 0.44
20 0.38 0.49 0.62 0.22 0.27 0.38
30 0.30 0.44 0.55 0.15 0.24 0.30
40 0.31 0.46 0.52 0.15 0.28 0.29
50 0.33 0.46 0.28 0.16 0.24 0.17
60 0.37 0.49 0.16 0.33
70 0.34 0.40 0.16 0.19
80 0.30 0.25 0.13 0.11
90 0.35 0.16
100 0.39 0.17
110 0.42 0.19
120
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