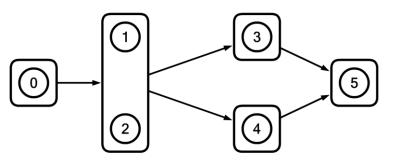


Project Scheduling with Alternative Technologies and Stochastic Activity Durations PMS Tours, April 2010

Stefan Creemers Roel Leus Bert De Reyck

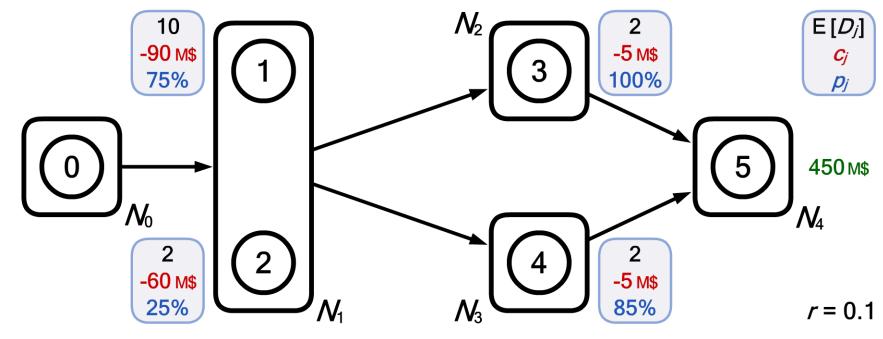
Introduction

- Goal = maximize NPV of projects in which:
 - Activities can fail
 - Activities that pursue the same result may be grouped in "modules"
 - Each module needs to be successful for the project to succeed
 - A module is successful if at least one of its activities succeeds

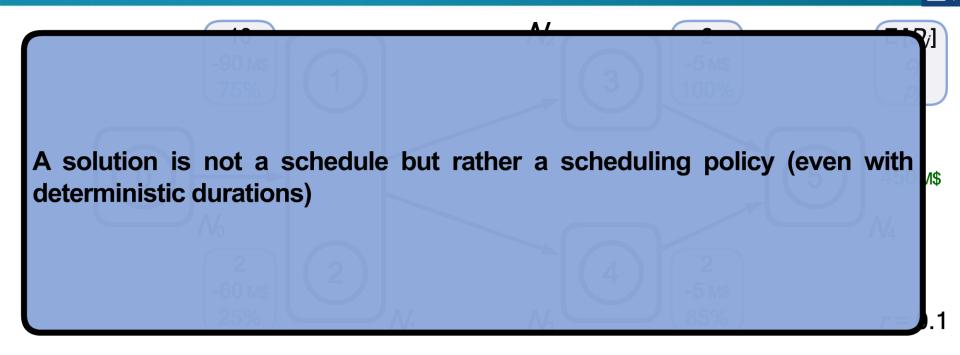


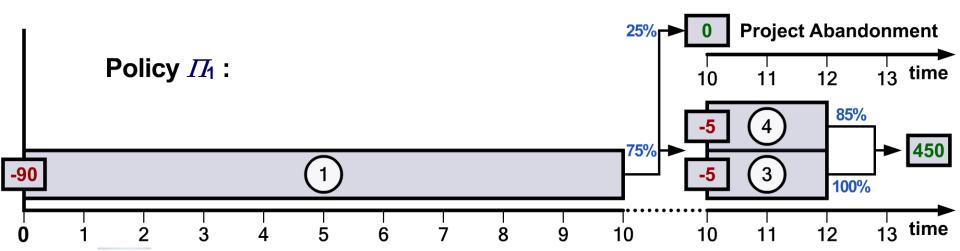
This is common in R&D (especially in NPD) but also in other sectors: pharmaceuticals, software development, ...

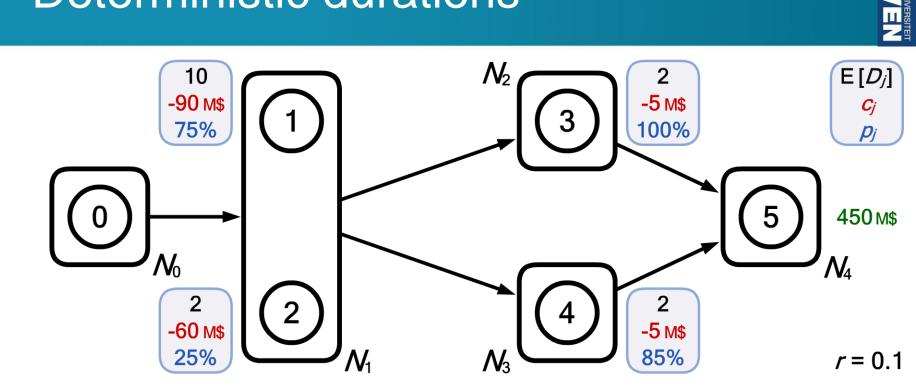
Definitions

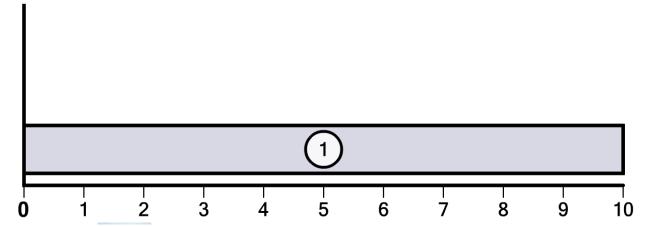


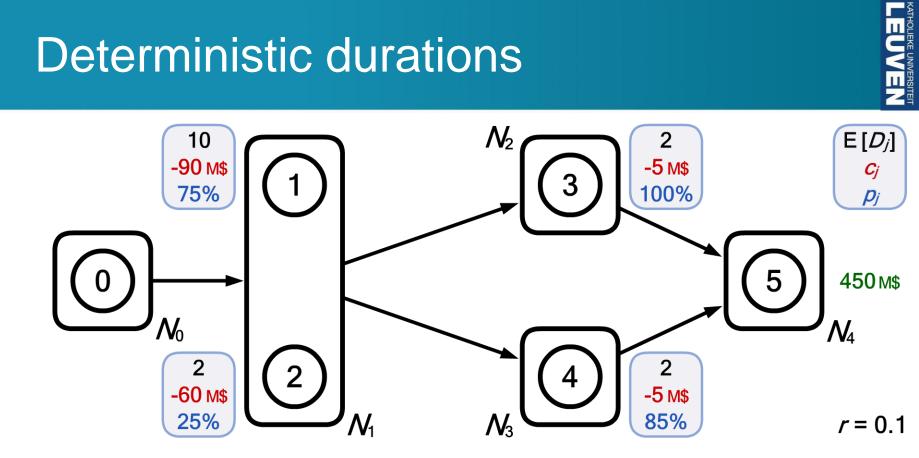
- Project network with *n* activities (activity = on the node)
- Stochastic activity durations: expected duration $E[D_j]$ of activity j
- Expected-NPV objective: cash flow c_j is incurred at the start of activity j
- End-of-project payoff C obtained upon overall project success
- Failures: each activity j has a probability of technical success p_j
- Time value of money => discount rate *r*
- *m* modules *N*_i

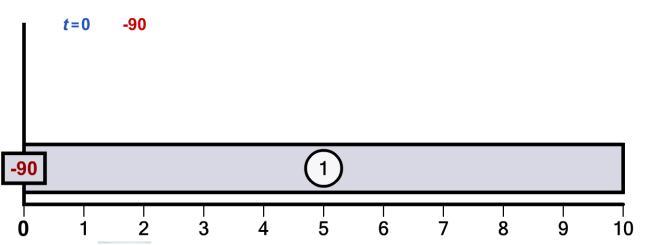


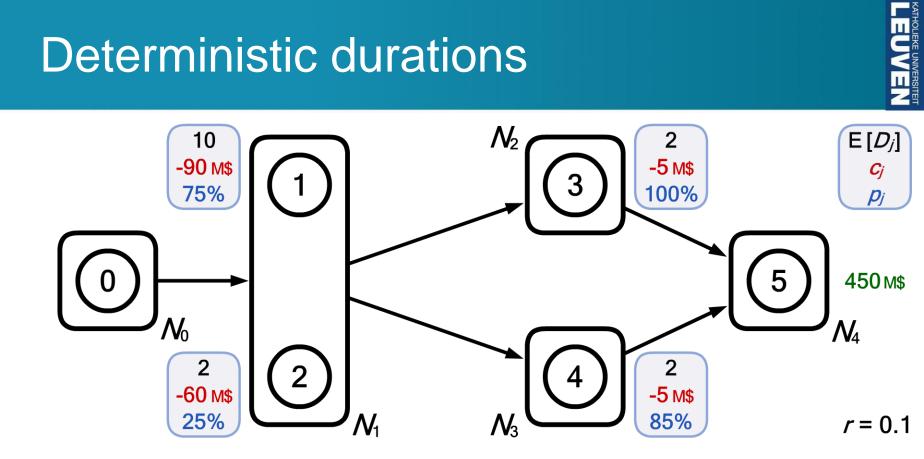


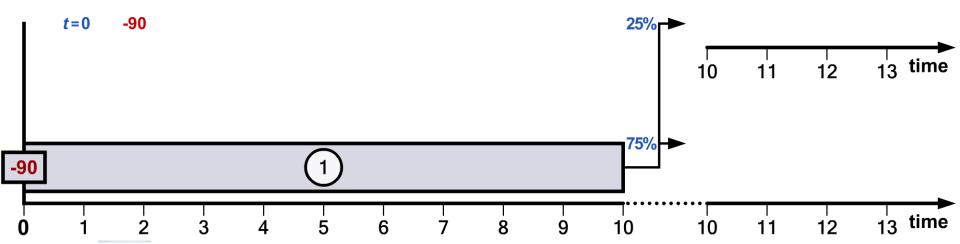


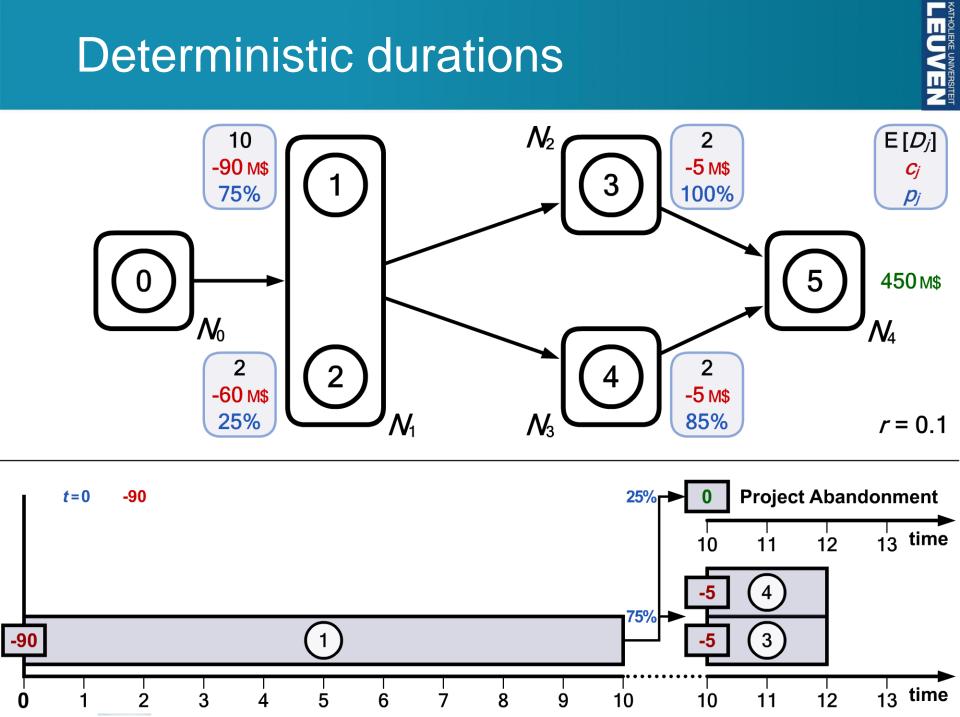


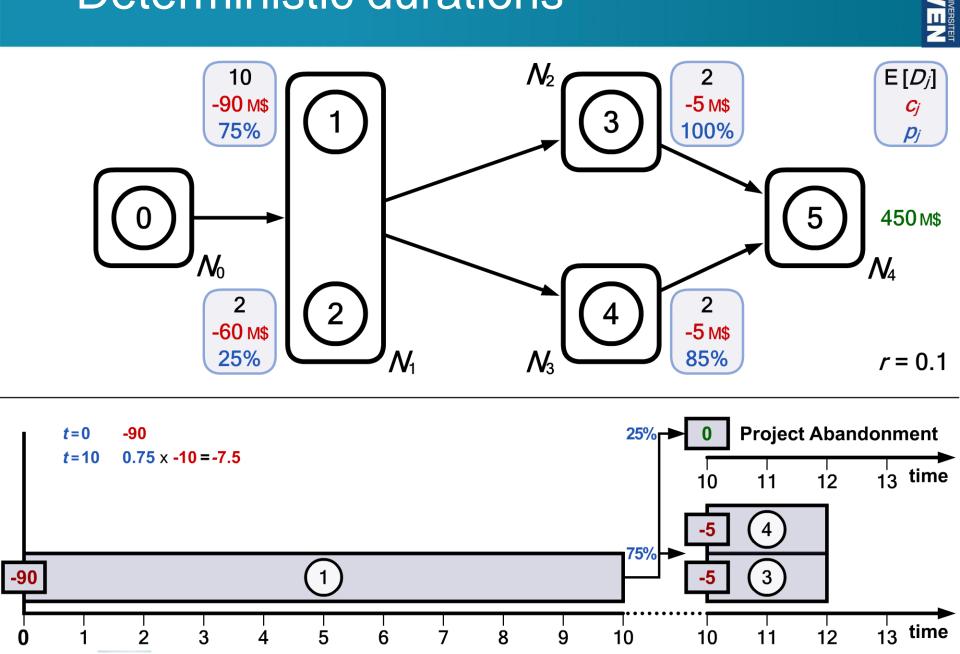


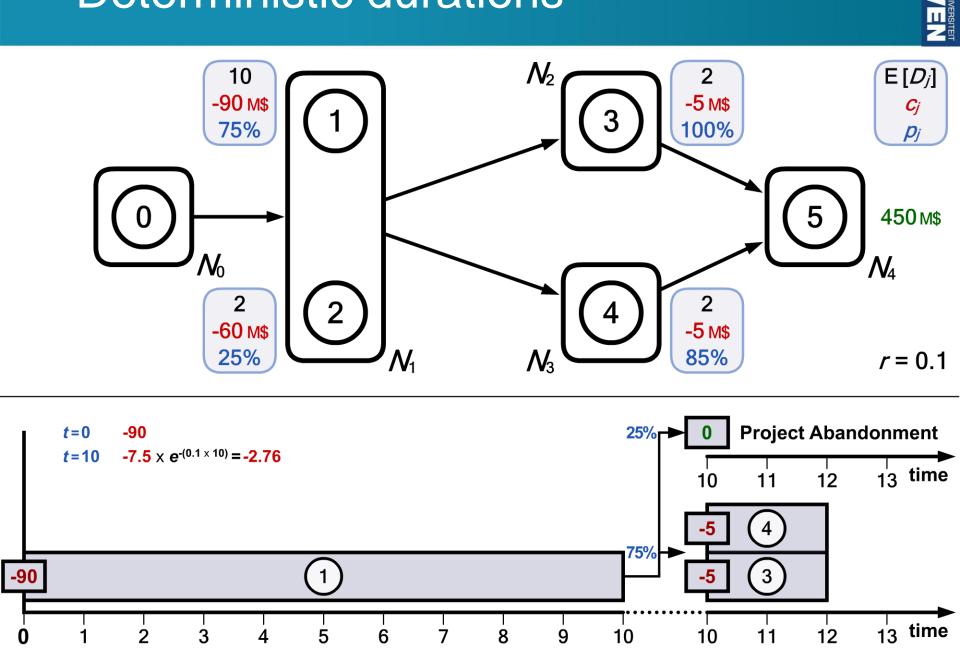


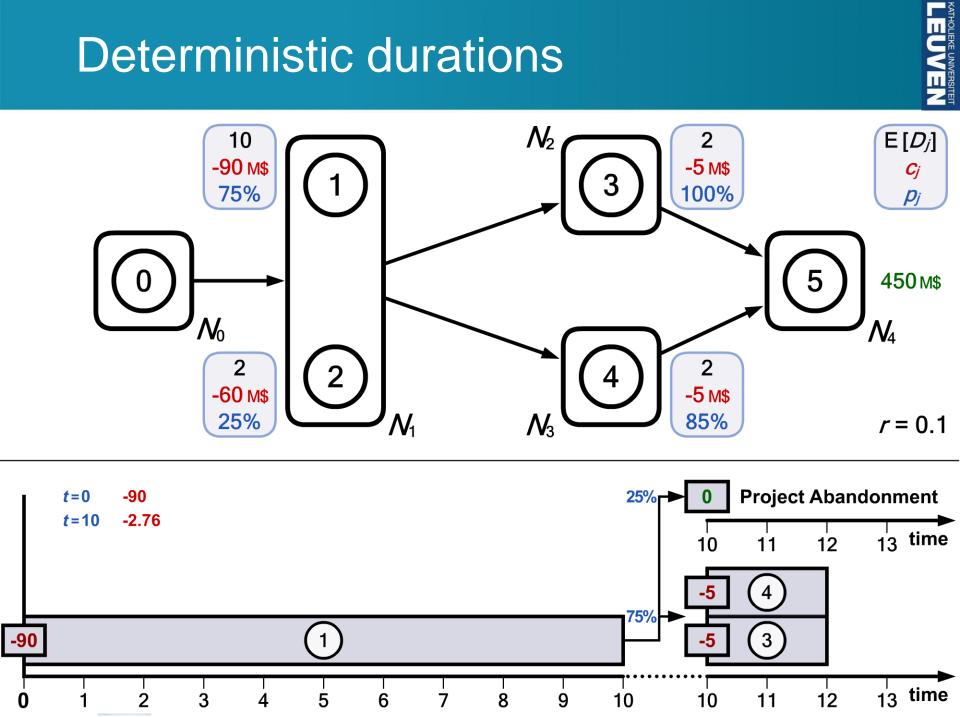


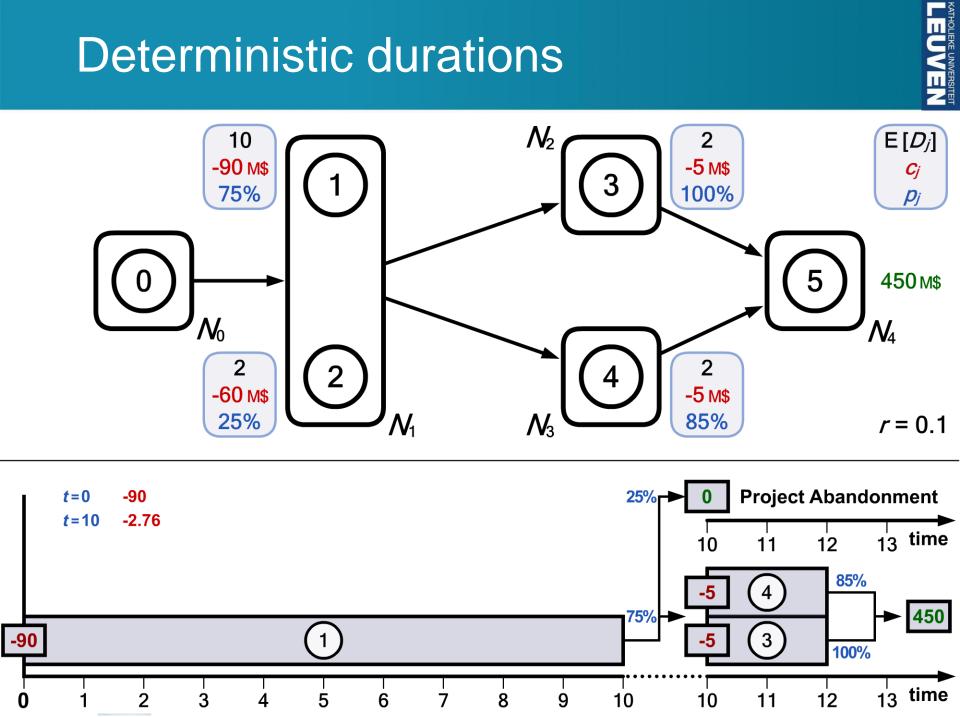


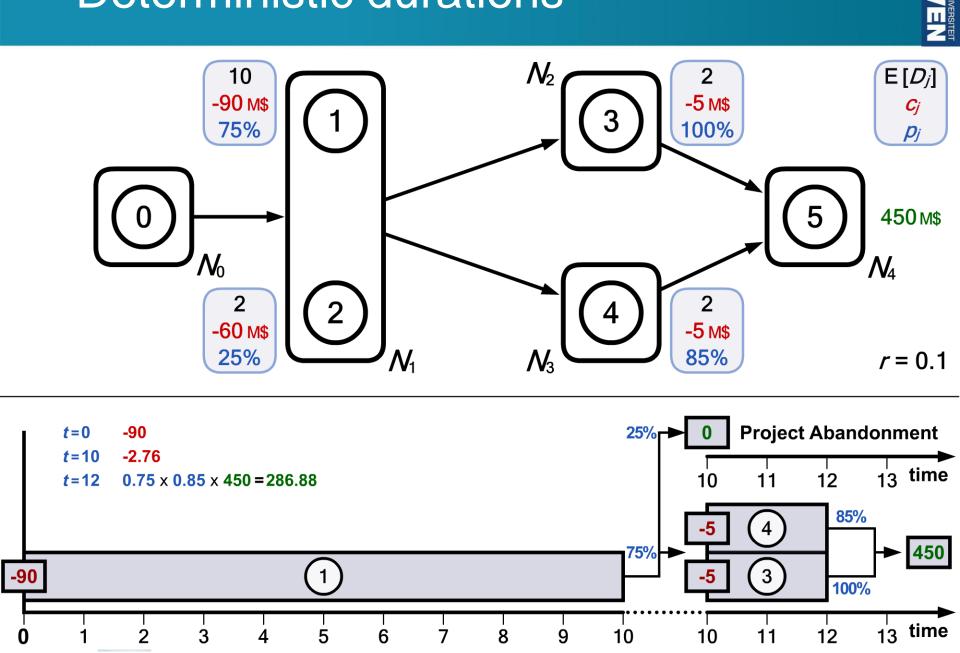


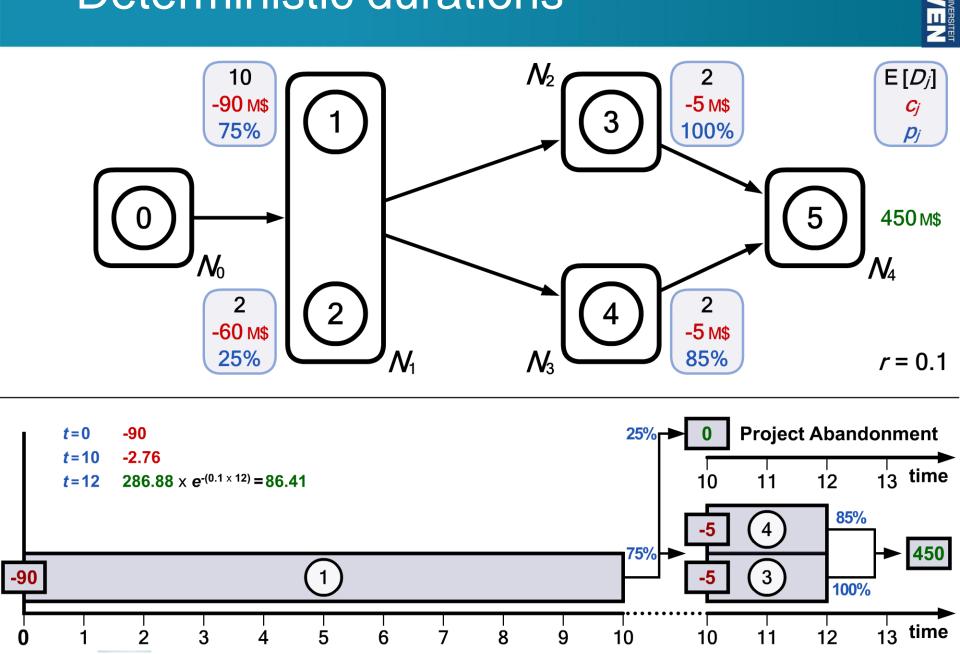


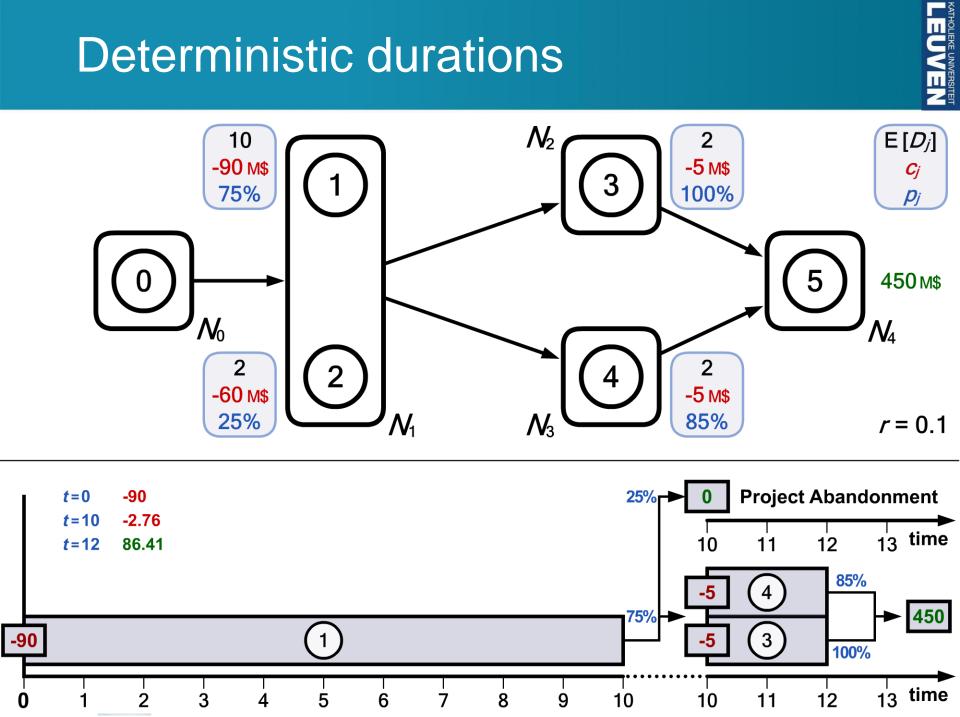


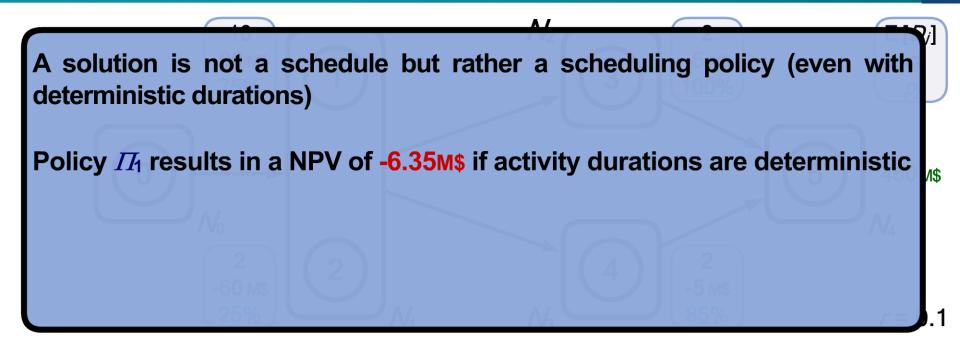


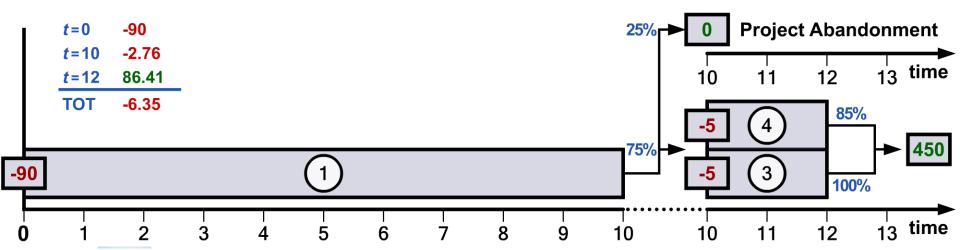






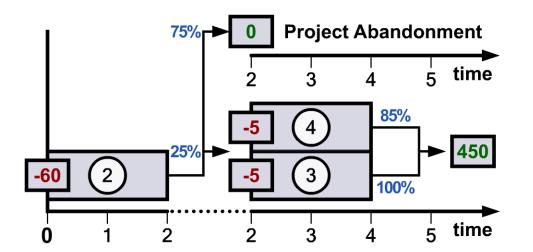






A solution is not a schedule but rather a scheduling policy (even with deterministic durations) Policy *II*₁ results in a NPV of -6.35M\$ if activity durations are deterministic *I*₁ Policy *II*₂ is optimal for deterministic durations and yields a NPV of 2.05M\$

<i>t</i> =0	-60		
t=2	-2.04		
<i>t</i> =4	64.10		
тот	2.05		

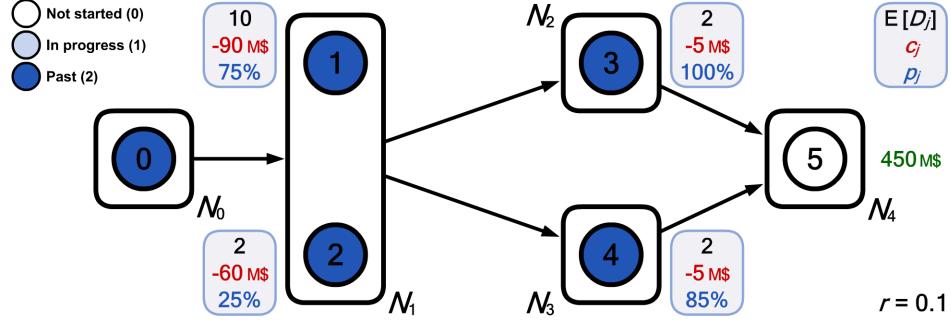


Stochastic durations: methodology

- Exponentially distributed durations => use of a Continuous-Time Markov Chain (CTMC) to model the statespace
- State of an activity *j* at time *t* can be:
 - Not started
 - In progress
 - Past (successfully finished, failed or considered redundant because another activity of its module has completed successfully)
- Size of statespace has upper bound 3ⁿ. Most states do not satisfy precedence constraints => a strict definition of the statespace is required. This is studied in Creemers et al. (2010)*

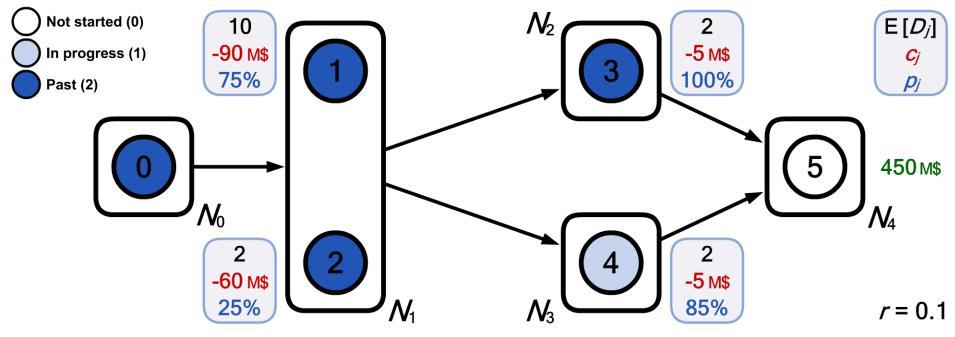
\Rightarrow Backward SDP-recursion

*Creemers S, Leus R, Lambrecht M (2010). Scheduling Markovian PERT networks to maximize the net present value. Operations Research Letters, vol. 38, no. 1, pp. 51 - 56.

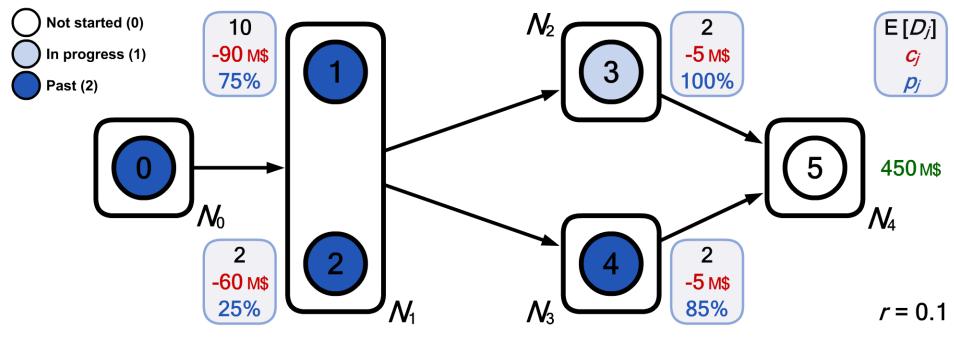


(2,2,2,2,2,0) [450m\$]

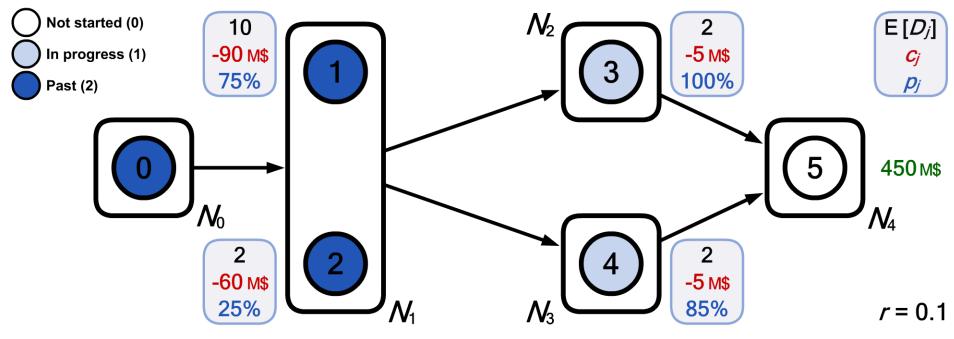
Project value upon entry of the final state = project payoff



(2,2,2,2,2,0) [450м\$] ► (2,2,2,2,1,0) [318.75м\$] Discount factor: $(1/E[D_4]) / (r+(1/E[D_4]))$ $D_4 = 2 \Rightarrow$ discount factor = 0.83 NPV upon state entry if success = 375 $p_4 = 0.85 \Rightarrow$ NPV upon state entry = 318.75



(2,2,2,2,2,0) [450м\$] → (2,2,2,2,1,0) [318.75м\$] → (2,2,2,1,2,0) [375м\$] Discount factor: $(1/E[D_3]) / (r+(1/E[D_3]))$ $D_3 = 2 \Rightarrow$ discount factor = 0.83 NPV upon state entry if success = 375 $p_3 = 1.00 \Rightarrow$ NPV upon state entry = 375

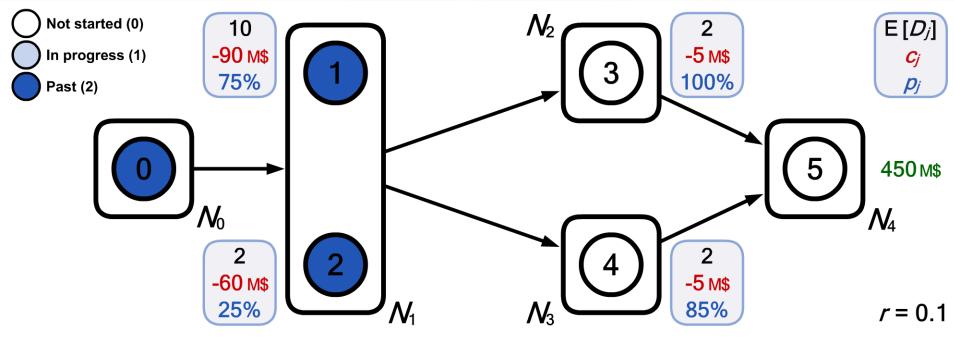


(2,2,2,2,2,0) [450м\$] → (2,2,2,2,1,0) [318.75м\$] → (2,2,2,1,2,0) [375м\$] → (2,2,2,1,1,0) [289.77м\$]

Discount factor = 0.91

Probability of finishing activity *j* first : $(1/E[D_j]) / (\Sigma_k(1/E[D_k]))$ => Probability 3 finishes first is 50% and $p_3 = 100\%$ 0.5 × 0.91 × 1.00 × 318.75 = 144.89 => Probability 4 finishes first is 50% and $p_4 = 85\%$ 0.5 × 0.91 × 0.85 × 375 = 144.89

=> NPV upon state entry = 289.77

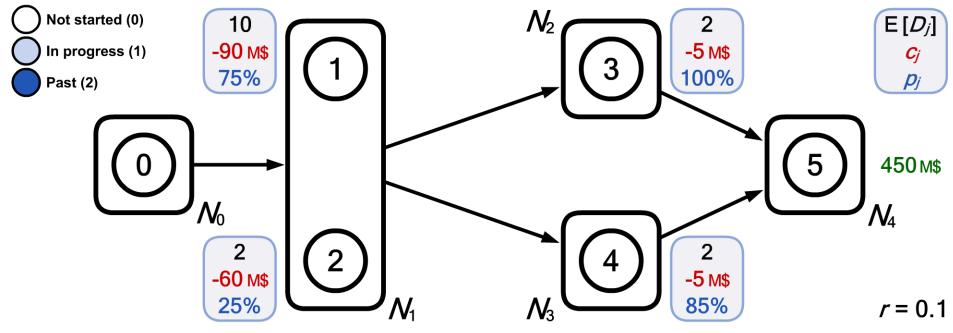


(2,2,2,2,2,0) [450м\$] → (2,2,2,2,1,0) [318.75м\$] → (2,2,2,1,2,0) [375м\$] → (2,2,2,1,1,0) [289.77м\$] → (2,2,2,0,0,0) [279.77м\$]

3 possible decisions (pick the optimal one): - Start activity 3 => incur cost c₃ = -5M\$ => end up in (2,2,2,1,0,0)

- Start activity 4 => incur cost c₄ = -5M\$ => end up in (2,2,2,0,1,0)

- Start activity 3 & 4 => incur cost c₃ + c₄ = -10M\$ => end up in (2,2,2,1,1,0)[289.77M\$]



A solution is not a schedule but rather a scheduling policy (even with deterministic durations)

Policy II₁ results in a NPV of -6.35M\$ if activity durations are deterministic

Policy 1/2 is optimal for deterministic durations and yields a NPV of 2.05M\$

For stochastic durations, policy Π_1 is optimal with a NPV of 14.70M\$

```
(2,2,2,2,2,0) [450м$]

→ (2,2,2,2,1,0) [318.75M$]

→ (2,2,2,1,2,0) [375M$]

→ (2,2,2,1,1,0) [289.77M$]

→ (2,2,2,0,0,0) [279.77M$]

→ (...)

→ (0,0,0,0,0,0) [14.70M$]
```

Results & future work

- Computational results:
 - 1260 randomly generated projects have been solved to optimality

n	10	20	30	60	90
CPU (sec)	0.00	0.03	1.95	84.04	4100.52

- Main determinant of computation time = network density (for fixed n)
- Future work:
 - Using the model to generate insights
 - General activity durations using Phase-type distributions
 - Renewable resources

Questions?

