A SIMULATION EXPERIMENT OF RANKING INDICES FOR MITIGATION RISKS

STEFAN CREEMERS ERIK DEMEULEMEESTER STIJN VAN DE VONDER

RISK MANAGEMENT 101

RISK MANAGEMENT 101

RISK MANAGEMENT 101

PROJECT RISK MANAGEMENT: CURRENT APPROACH

Uncertainty is captured in activity durations: Normal distribution Triangular distribution Beta distribution

PROJECT RISK MANAGEMENT: CURRENT APPROACH

- Uncertainty is captured in activity durations:
- Normal distributionTriangular distributionBeta distribution

Monte Carlo simulation is used to obtain estimates of project objectives (e.g. cdf of the completion time)

PROJECT RISK MANAGEMENT: CURRENT APPROACH

RISK MITIGATION: RANKING OF MOST SENSITIVE ACTIVITIES

RISK MITIGATION: RANKING OF MOST SENSITIVE ACTIVITIES

CURRENT RANKING MEASURES

PROBLEMS WITH CURRENT APPROACH

- Project managers have a very hard time to model uncertainty
- All of the previous ranking measures have been criticized
- It is not clear where the uncertainty originates from
- It is unclear how to mitigate uncertainty

NEW APPROACH: RISK-DRIVEN (INSTEAD OF ACTIVITY-BASED)

$$\boldsymbol{d}_{j} = f(\boldsymbol{d}_{j}, \boldsymbol{m}_{j, e})$$

Activity duration distribution (ACT 1)

RISK-DRIVEN RANKING MEASURES

Cruciality index

$$CRIR_e = |corr(\boldsymbol{m}_e, \boldsymbol{c})|$$

Spearman rank correlation

$$SRCR_e = |corr(rank(m_e), rank(c))|$$

Critical Delay Contribution (CDC)

$$CDC_{j,e} = \frac{1}{q} \frac{\sum_{p=1}^{q} m_{j,e,p} \delta_{j,p} (c_p - c)}{\sum_{j \in N} \sum_{e \in R} \sum_{p=1}^{q} m_{j,e,p} \delta_{j,p}}$$

	DUR	DISRUPTION	CDC
ACT 1	5		
ACT 2	3		
ACT 3	4		
PROJECT	8		

	DUR	DISRUPTION	CDC
ACT 1	6	1	
ACT 2	3		
ACT 3	4		
PROJECT	9		

	DUR	DISRUPTION	CDC
ACT 1	6	1	
ACT 2	5	2	
ACT 3	4		
PROJECT	11		

	DUR	DISRUPTION	CDC
ACT 1	6	1	
ACT 2	5	2	
ACT 3	8	4	
PROJECT	11	2	

	DUR	DISRUPTION	CDC
ACT 1	6	1	
ACT 2	5	2	
ACT 3	8	4	
PROJECT	11	2	2

	DUR	DISRUPTION	CDC
ACT 1	6	1	
ACT 2	5	2	
ACT 3	8	4	0
PROJECT	11	2	2

	DUR	DISRUPTION	CDC
ACT 1	6	1	
ACT 2	5	2	1,33
ACT 3	8	4	0
PROJECT	11	2	2

	DUR	DISRUPTION	CDC
ACT 1	6	1	0,67
ACT 2	5	2	1,33
ACT 3	8	4	0
PROJECT	11	2	2

RANKED BAR CHART USING RISK-DRIVEN RANKING MEASURES

ADVANTAGES OF THE NEW APPROACH

- Risks are much easier to predict than uncertainty
- CDC is calculated on risk per activity basis and can be aggregated on the level of risks and activities
- Risks root causes are ranked => we know which risk to mitigate!

ADVANTAGES OF THE NEW APPROACH

- Risks are much easier to predict than uncertainty
- IS THE NEW APPROACH BETTER? CDC is calculated on risk per activity basis aggregated on the level of risks an
- Risks root causes are rap

Ahich risk to

mitigate!

EVALUATING THE NEW APPROACH: COMPUTATIONAL EXPERIMENT

- For a large set of projects (600 projects of PSPLIB 120):
 - Model uncertainty (i.e. define risks, impacts, probabilities...)
 - Simulate the project execution (using 1000 iterations)
 - For each ranking measure:
 - Calculate the highest-ranked risk according to the measure
 - Eliminate the highest-ranked risk (i.e. focus our mitigation efforts on this risk)

How good do the measures perform when mitigating 10 risks?

COMPUTATIONAL EXPERIMENT: RANKING MEASURES

MODEL VALIDITY

Question: how many simulation iterations are required to obtain convergence in project completion times?

Test: proportion of projects for which the means are not equal for different numbers of simulation iterations if risks are ranked randomly

MODEL VALIDITY: PROPORTION OF PROJECTS FOR WHICH MEANS ARE NOT EQUAL FOR DIFFERENT NUMBERS OF SIMULATION ITERATIONS WHEN RISKS ARE RANKED RANDOMLY

MODEL VALIDITY

Question: how many simulation iterations are required to obtain convergence in project completion times?

Test: proportion of projects for which the means are not equal for different numbers of simulation iterations if risks are ranked randomly

Conclusion: 100 simulation iterations suffice!

MODEL VALIDITY

Question: how many simulation iterations are required to obtain convergence in project completion times?

Test: proportion of projects for which the means are not equal for different numbers of simulation iterations if risks are ranked randomly

Conclusion: 100 simulation iterations suffice!

Question: for a given ranking index, does the ranking of risks converges as well?

Test: proportion of projects for which the means are not equal for different numbers of simulation iterations used to determine the ranking of risks

MODEL VALIDITY

Question: how many simulation iterations are required to obtain convergence in project completion times?

Test: proportion of projects for which the means are not equal for different numbers of simulation iterations if risks are ranked randomly

Conclusion: 100 simulation iterations suffice!

Question: for a given ranking index, does the ranking of risks converges as well?

Test: proportion of projects for which the means are not equal for different numbers of simulation iterations used to determine the ranking of risks

Conclusion: only for CDCR the ranking of risk converges!

CONCLUSIONS

- A risk-driven approach to project risk analysis is preferred
- CDC is able to outperform current best practice measures (activity-based AND risk-driven)
- CDC is very close to greedy optimal
- Recommendations are insensitive to parameter settings:
 - Different settings of risk probabilities and impacts
 - Risk occurrences correlated or not?
- Future research: Optimal approach is future research

RISK PROFILES

- We consider 48 risk profiles using 5 risk parameters:
 - Risk uniformity (high/low)
 - Risk quantity (high/low)
 - Risk probability (high/low)
 - Risk impact (high/low)
 - Risk correlation (no/random/perfect)

LIMITED MITIGATION POTENTIAL

LIMITED MITIGATION POTENTIAL (75% MITIGATION POTENTIAL)

	BASE CASE	LIMITED MITIGATION POTENTIAL
RAND	0,000	0,001
ОРТ	0,697	0,538
СА	0,619	0,395
ACI	0,640	0,482
SI	0,639	0,463
CRI	0,636	0,424
SRCA	0,677	0,444
SSI	0,614	0,465
CDCA	0,644	0,49
CRIR	0,638	0,433
SRCR	0,684	0,446
CDCR	0,695	0,537

MULTIPLICATIVE RISK IMPACTS

MULTIPLICATIVE RISK IMPACT

	BASE CASE	MULTIPLICATIVE IMPACT
RAND	0,000	-0,002
OPT	0,697	0,728
СА	0,619	0,596
ACI	0,640	0,632
SI	0,639	0,655
CRI	0,636	0,678
SRCA	0,677	0,7
SSI	0,614	0,682
CDCA	0,644	0,687
CRIR	0,638	0,679
SRCR	0,684	0,708
CDCR	0,695	0,725

RISK IMPACTS SUBJECT TO NOISE

RISK IMPACT IS SUBJECT TO NOISE (25% NOISE)

	BASE CASE	RISK IMPACT SUBJECT TO NOISE
RAND	0,000	0
OPT	0,697	0,698
СА	0,619	0,62
ACI	0,640	0,642
SI	0,639	0,641
CRI	0,636	0,612
SRCA	0,677	0,657
SSI	0,614	0,615
CDCA	0,644	0,645
CRIR	0,638	0,639
SRCR	0,684	0,673
CDCR	0,695	0,696

RISK UNIFORMITY / ACTIVITY GROUPS

RISK UNIFORMITY / ACTIVITY GROUPS

Index	$MEI^{(\cdot)}$			
RAND	006	006	006	008
OPT	.019	.073	.167	.338
CA	.000	.001	.001	.002
ACI	.001	.003	.004	.002
SI	.001	.002	.006	.005
CRI	.001	.005	.021	.070
SRCA	.001	.006	.025	.074
SSI	.002	.010	.036	.107
CDCA	.002	.009	.036	.111
CRIR	.001	.046	.146	.326
SRCR	.000	.050	.149	.329
CDCR	.017	.072	.167	.338
Risk profile	1	2	3	4

EQUAL RISK RANKING

EQUAL RISK RANKING

