Minimizing the makespan of a project with stochastic activity durations under resource constraints

Stefan Creemers (April 2, 2014)

Agenda

- Problem setting:
 - Past work
 - Phase Type (PH) distributions
 - The SRCPSP
- Model discussion & comparison
- Results:
 - Solution quality
 - Computational performance
- Contribution

<page-header>

Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

- 1. Maximum-eNPV objective
- 2. No resources
- 3. Exponentially-distributed activity durations
- 4. Use of a SDP recursion to obtain the optimal policy

Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

- 1. Maximum-eNPV objective
- 2. No resources
- 3. Exponentially-distributed activity durations
- 4. Use of a SDP recursion to obtain the optimal policy

Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

- 1. Maximum-eNPV objective
- 2. No resources
- 3. Exponentially-distributed activity durations
- 4. Use of a SDP recursion to obtain the optimal policy

- 1. Minimum-makespan objective
- 2. Renewable resources
- 3. General activity durations (PH approximation)
- 4. Use of an improved/modified SDP recursion

Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

- 1. Maximum-eNPV objective
- 2. No resources
- 3. Exponentially-distributed activity durations
- 4. Use of a SDP recursion to obtain the optimal policy

- 1. Minimum-makespan objective
- 2. Renewable resources
- 3. General activity durations (PH approximation)
- 4. Use of an improved/modified SDP recursion

Improvement of the SDP recursion

n	OS	% Solved	Average CPU (2010)	Average CPU (improved)	Average Factor
10	0.8	100%	0.00	0.00	-
10	0.6	100%	0.00	0.00	-
10	0.4	100%	0.00	0.00	6.81
20	0.8	100%	0.00	0.00	-
20	0.6	100%	0.01	0.00	27.25
20	0.4	100%	0.46	0.03	17.60
30	0.8	100%	0.01	0.00	17.53
30	0.6	100%	0.33	0.02	14.90
30	0.4	100%	26.92	1.49	18.12
40	0.8	100%	0.03	0.00	12.41
40	0.6	100%	6.62	0.49	13.62
40	0.4	97%	2,337.96	72.25	32.36
50	0.8	100%	0.15	0.01	10.60
50	0.6	100%	100.28	4.43	22.62
50	0.4	13%	52,267.30	823.71	63.45
60	0.8	100%	0.74	0.06	12.36
60	0.6	100%	2,210.08	67.87	32.56
60	0.4	0%	-	-	-

n	OS	% Solved	Average CPU (2010)	Average CPU (improved)	Average Factor
70	0.8	100%	3.19	0.24	13.09
70	0.6	73%	17,495.49	378.64	46.21
70	0.4	0%	-	-	-
80	0.8	100%	10.81	0.79	13.65
80	0.6	30%	72,473.41	1,188.01	61.00
80	0.4	0%	-	-	-
90	0.8	100%	50.64	3.15	16.06
90	0.6	0%	-	-	-
90	0.4	0%	-	-	-
100	0.8	100%	171.42	9.60	17.85
100	0.6	0%	-	-	-
100	0.4	0%	-	-	-
110	0.8	100%	1,193.88	40.93	29.17
110	0.6	0%	-	-	-
110	0.4	0%	-	-	-
120	0.8	100%	12,789.06	260.66	49.06
120	0.6	0%	-	_	-
120	0.4	0%	-	-	-

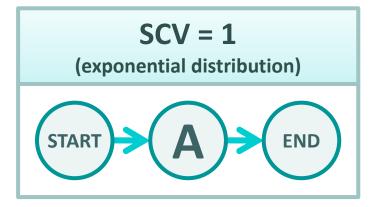
Improvement of the SDP recursion

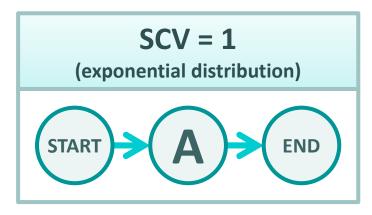
n	OS	% Solved	Average CPU (2010)	Average CPU (improved)	Average Factor		n	OS	% Solved	Average CPU (2010)	Average CPU (improved)	Average Factor
10	0.8	100%	0.00	0.00	-		70	0.8	100%	3.19	0.24	13.09
10	0.6	100%	0.00	0.00			70	0.6	73%	17,495.49	378.64	46.21
10	0.4	100%	0.00	0.00	6.81		70	0.4	0%	_	-	-
20	In comparison with the model of Creemers et al. (2010),											13.65
20	0.6	In cor	nparisor	n with th	ne mo	de	el O	t Cr	eemer	s et al. (2	2010),	61.00
20	0.4	the c	omputat	ion sno	ad ha	c h		n in	crosco	d by fac	tor 50	-
30	0.8								16.06			
30	0.6	(= 5,000% faster).								-		
30	0.4			,					,			-
40	0.8											17.85
40	0.6											-
40	0.4											-
50	0.8	10070	0.10	0.01	10100		110	0.0	10070	1,199.00	10.55	29.17
50	0.6	100%	100.28	4.43	22.62		110	0.6		-	-	-
50	0.4	13%	52,267.30	823.71	63.45		110	0.4		-	-	-
60	0.8	100%	0.74	0.06	12.36		120	0.8	100%	12,789.06	260.66	49.06
60	0.6	100%	2,210.08	67.87	32.56		120	0.6		-	-	-
60	0.4		-	_	-		120	0.4		-	-	-

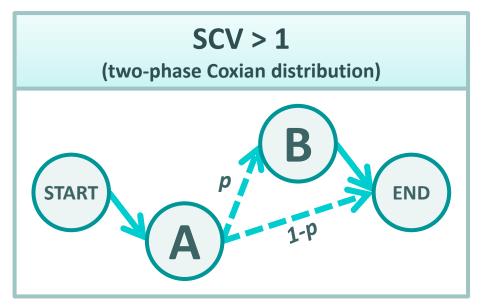
Improvement of the SDP recursion

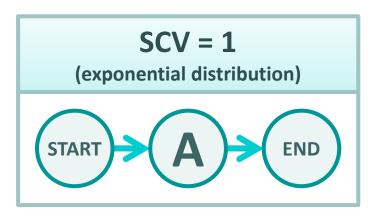
n	OS	% Solved	Average CPU (2010)	Average CPU (improved)	Average Factor		n	OS	% Solved	Average CPU (2010)	Average CPU (improved)	Average Factor
10	0.8	100%	0.00	0.00			70	0.8	100%	3.19	0.24	13.09
10	0.6	100%	0.00	0.00	-		70	0.6	73%	17,495.49	378.64	46.21
10	0.4	100%	0.00	0.00	6.81		70	0.4	0%	_	_	-
20	0.8											13.65
20	0.6	In comparison with the model of Creemers et al. (2010),									2010),	61.00
20	0.4	the c	omnutat	ion snee	ed he	c h		n in	crease	d by fac	tor 50	-
30	0.8									16.06		
30	0.6			(=	5,000)%	fas	ster	') .			-
30	0.4			,								-
40	0.8	Wher	n compa	red to th	ne mo	bde	ا ا	f Sc	bel et	al. (2009	9) the	17.85
40	0.6	vviici								•		-
40	0.4		new	/ model	IS eve	en	750),0()0% ta	ster.		-
50	0.8	10070	0.10	0.01	10.00		110	0.0	10070	1,100,000	10133	29.17
50	0.6	100%	100.28	4.43	22.62		110	0.6		_	_	-
50	0.4	13%	52,267.30	823.71	63.45		110	0.4		_	_	-
60	0.8	100%	0.74	0.06	12.36		120	0.8	100%	12,789.06	260.66	49.06
60	0.6	100%	2,210.08	67.87	32.56		120	0.6		_	-	-
60	0.4		-		-		120	0.4		_	-	-

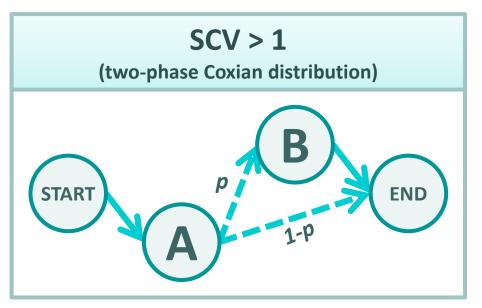
Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

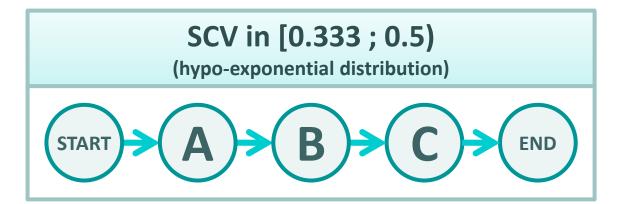


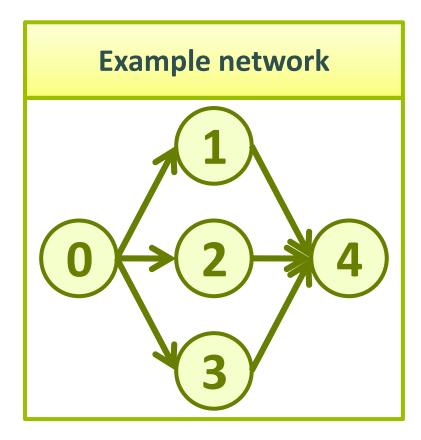

- 1. Maximum-eNPV objective
- 2. No resources
- 3. Exponentially-distributed activity durations
- 4. Use of a SDP recursion to obtain the optimal policy

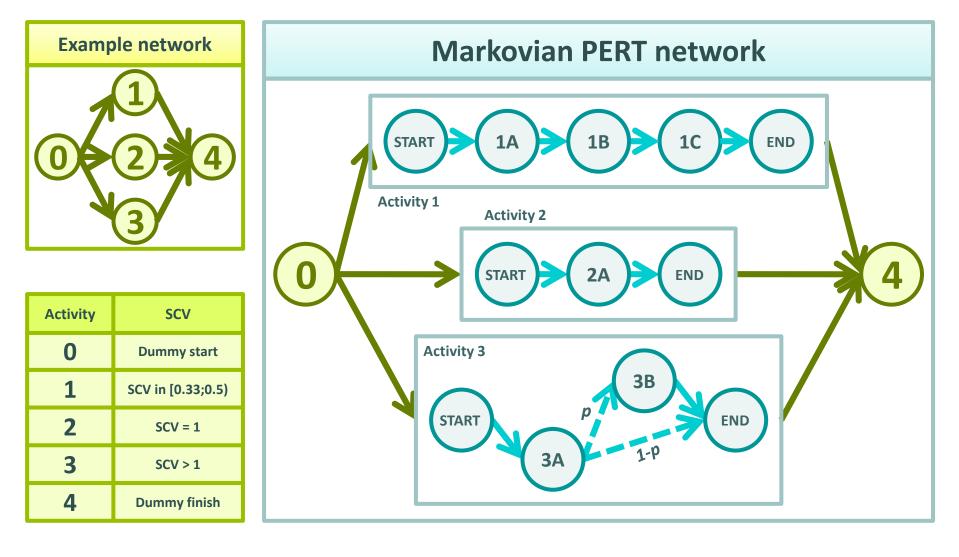

- 1. Minimum-makespan objective
- 2. Renewable resources
- 3. General activity durations (PH approximation)
- 4. Use of an improved/modified SDP recursion

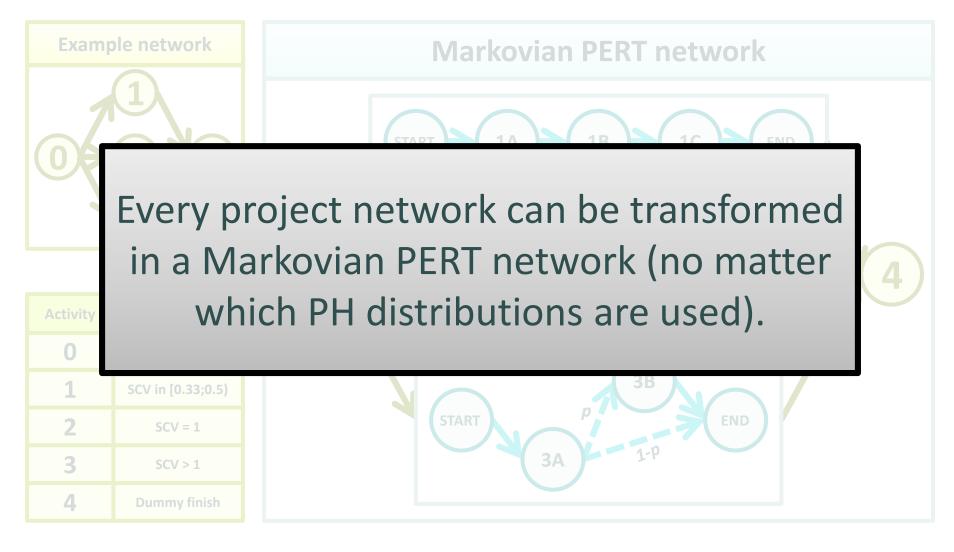

Model extensions: PH distributions

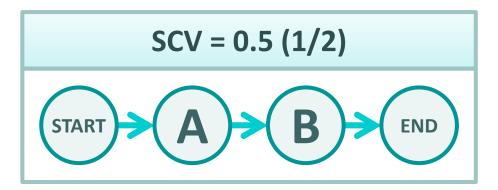

- Introduced by Neuts in 1981
- A Phase Type (PH) distribution is a mixture of exponential distributions
- The exponential, Erlang, Coxian, and hyperexponential distribution are all examples of a PH distribution
- We use simple PH distributions to match the first two moments of the distribution of the activity duration (more advanced PH distributions, however, can also be used)

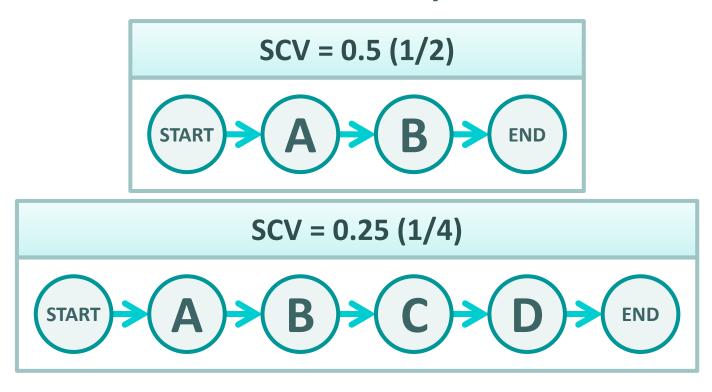


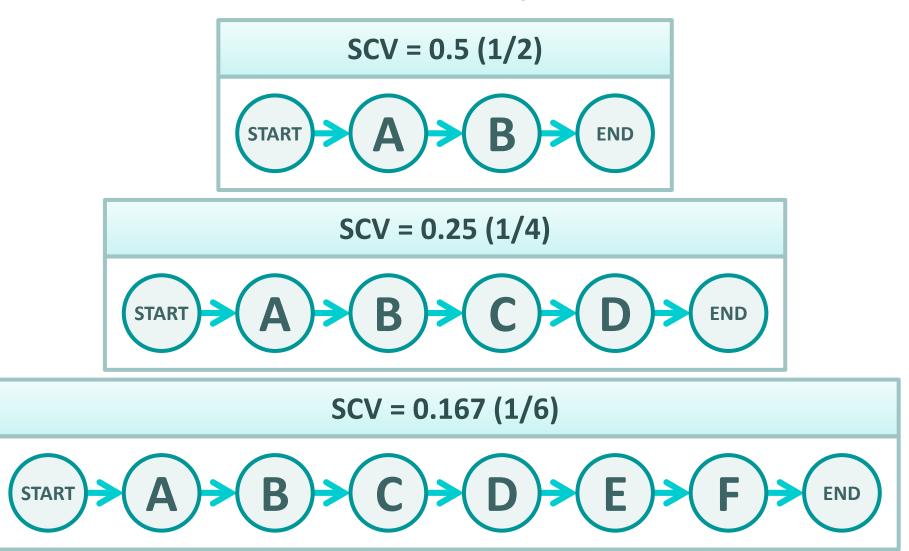











Activity	SCV	Example network
0	Dummy start	
1	SCV in [0.33;0.5)	
2	SCV = 1	$0 \rightarrow 2 \rightarrow 4$
3	SCV > 1	
4	Dummy finish	3

Low variability duration variability inflates the size of the Markovian PERT network.

=>

Our model works best when duration variability is moderate to high.

SCV = 0.167 (1/6)

Ε

F

B

Creemers, Leus, Lambrecht (2010). Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 38, pp. 51-56.

- 1. Maximum-eNPV objective
- 2. No resources
- 3. Exponentially-distributed activity durations
- 4. Use of a SDP recursion to obtain the optimal policy

- 1. Minimum-makespan objective
- 2. Renewable resources
- 3. General activity durations (PH approximation)
- 4. Use of an improved/modified SDP recursion

Author	Tsai and Gemmill (1998)
Date	1998
Method	Simulated annealing & tabu search
Policy class	RB (Resource-Based)

Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)
Date	1998	2009
Method	Simulated annealing & tabu search	Genetic algorithm
Policy class	RB (Resource-Based)	AB (Activity-Based)

Author	Tsai and Gemmill	Ballestìn & Leus	Ashtiani et al.	
	(1998)	(2009)	(2011)	
Date	Date 1998		2011	
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	
Policy class	RB	AB	PP	
	(Resource-Based)	(Activity-Based)	(PreProcessor)	

	H	euristic approach	es	
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	
Date 1998		2009	2011	
Method	nod Simulated annealing & tabu search Genetic algorithm		Two-phase local- search procedure	
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	

	He	euristic approach	es	
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)
Date	Date 1998 2009		2011	2001
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES

	H	euristic approach			
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)
Date	1998	2009	2011	2001	Under review
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies

	H	euristic approach	Optimal a	pproaches	
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)
Date	1998	2009	2011	2001	Under review
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies

	Heuristic approaches			Optimal approaches	
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)
Date	1998	2009	2011	2001	Under review
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies
Data set					

	H	euristic approach	Optimal a	pproaches		
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)	
Date	1998	2009	2011	2001	Under review	
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion	
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies	
Data set						
J30 (PSPLIB)						
J60 (PSPLIB)						
J120 (PSPLIB)]					
Patterson	1					
Golenko]					

	H	euristic approach	Optimal approaches				
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)		
Date	1998	2009	2011	2001	Under review		
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion		
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies		
Data set							
J30 (PSPLIB)							
J60 (PSPLIB)							
J120 (PSPLIB)							
Patterson							
Golenko]		

	Н	euristic approach	Optimal a	pproaches			
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)		
Date	1998	2009	2011	2001	Under review		
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion		
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies		
Data set							
J30 (PSPLIB)							
J60 (PSPLIB)							
J120 (PSPLIB)							
Patterson							
Golenko							

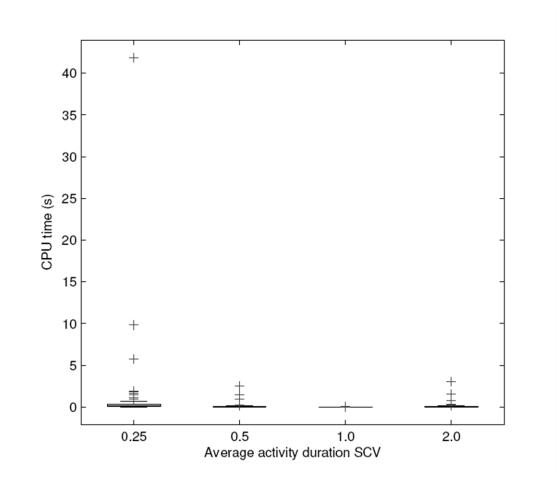
	Н	euristic approach	Optimal a	pproaches			
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)		
Date	1998	2009	2011	2001	Under review		
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion		
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies		
Data set							
J30 (PSPLIB)							
J60 (PSPLIB)							
J120 (PSPLIB)					IMPOSSIBLE		
Patterson							
Golenko							

	Н	euristic approach	Optimal a	pproaches			
Author	Tsai and Gemmill (1998)	Ballestìn & Leus (2009)	Ashtiani et al. (2011)	Stork (2001)	Creemers (201?)		
Date	1998	2009	2011	2001	Under review		
Method	Simulated annealing & tabu search	Genetic algorithm	Two-phase local- search procedure	Five B&B algorithms	SDP recursion		
Policy class	RB (Resource-Based)	AB (Activity-Based)	PP (PreProcessor)	AB & ES	Elementary policies		
Data set							
J30 (PSPLIB)							
J60 (PSPLIB)							
J120 (PSPLIB)					IMPOSSIBLE		
Patterson							
Golenko					SCV = 0.014		

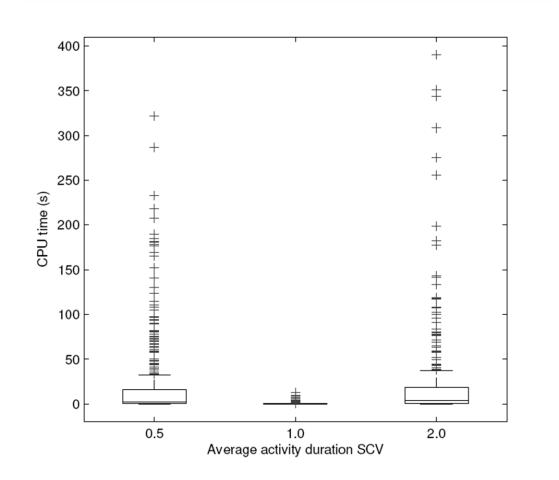
Results: Solution quality

Results: Solution quality

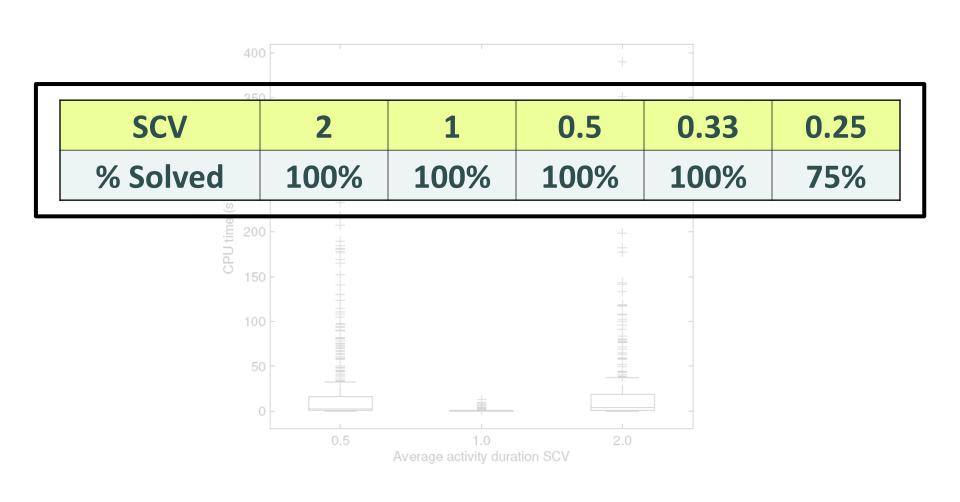
- We optimize over a more general class of policies
 => we expect better results.
- From Ballestin & Leus (2009) we obtained the results for the J30 & J60 problem instances if activity durations are exponentially distributed:


– J30 average improvement of solution quality of 13,2%

J60 average improvement of solution quality of 13,5%

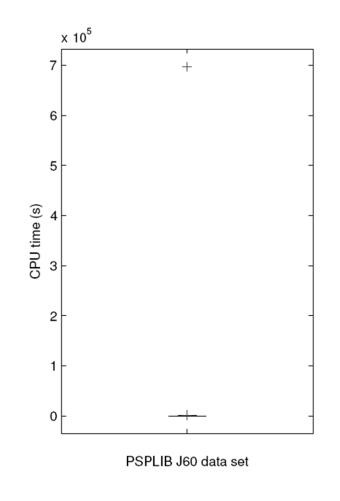

=> Significant improvement of solution quality!

Results: Computational performance


Results: Computational performance (Patterson)

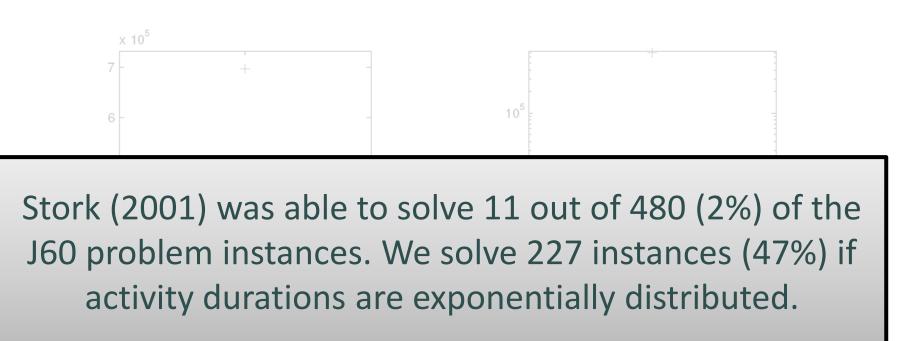
Results: Computational performance (J30 - PSPLIB)

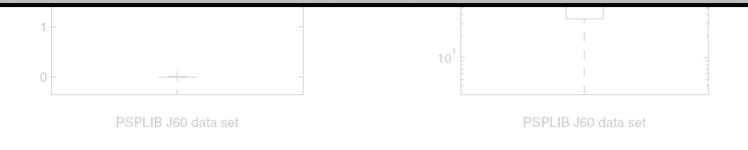
Results: Computational performance (J30 - PSPLIB)


Results: Computational performance (J30 - PSPLIB)

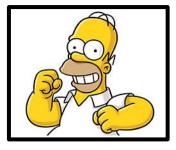
400) -	1	+	_		
SCV	2	1	0.5	0.33	0.25	
% Solved	100%	100%	100%	100%	75%	
Stork (2001) was able to solve 179 out of 480 (37%) of the J30 problem instances. Even if activity durations have limited variability, we outperform Stork. In addition, we optimize over a class of policies that is more general!						

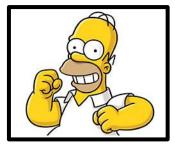
2.0


Results: Computational performance (J60 - PSPLIB)




Results: Computational performance (J60 - PSPLIB)


Results: Computational performance (J60 - PSPLIB)


We improve the SDP recursion of Creemers et al. (2010) and obtain an increase in computational efficiency of 5,000%.

We improve the SDP recursion of Creemers et al. (2010) and obtain an increase in computational efficiency of 5,000%.

We extend the model of Creemers et al. (2010) in order to solve the SRCPSP. We add resource constraints, general activity durations, and use a minimum-makespan objective.

We improve the SDP recursion of Creemers et al. (2010) and obtain an increase in computational efficiency of 5,000%.

We extend the model of Creemers et al. (2010) in order to solve the SRCPSP. We add resource constraints, general activity durations, and use a minimum-makespan objective.

Solving the SRCPSP makes sense if activities have moderate- to high levels of duration variability. For this setting, our model outperforms the state-of-the art (both in solution quality & in computation speed).

