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Horizontal Cooperation

What = cooperation where companies bundle their
orders/join shipments

Why = to reduce transport costs, CO2 emissions, and
congestion

How = by using the available space in truck hauls of
one company to ship items of another company

Vertical cooperation = cooperation with companies at
different level of the supply chain (e.g., supplier &
buyers)

Horizontal cooperation = cooperation with companies
at the same level of the supply chain



Agenda

 Examples of horizontal cooperations



Examples of Horizontal Cooperation

’%%Tupperware P &G



Examples of Horizontal Cooperation

’%%Tupperware P &G
e

Nestle Peps|



Examples of Horizontal Cooperation

%gmpperware P &G
= 9

Nestle Peps|

< Baxter

7



Examples of Horizontal Cooperation

What do we observe?
1. Horizontal cooperations can be established even with

competitors!
2. Horizontal cooperations often only have 2 partners.
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* Assumptions:
— Two companies

— Both companies adopt a (S,c,s) can-order policy to
synchronize their orders

— No replenishment lead time
— Unit Poisson demand (iid for both companies)
e Definitions:
— |.=the inventory level at company /
— S, =the order-up to level of company |
— ¢, =the can-order level of company i
— s, = the reorder-point of company |
— /A, =the Poisson arrival rate of customers at company i



Agenda

* Problem Setting Example



Problem Setting Example (t = t,)

Company 1 2 Company 2



Problem Setting Example (t =t,)

5,
I
Cl .
@
—h
51 5

Company 1 Company 2




51

Company 1

5)

Problem Setting Example (t =t,)

Company 2



51

Company 1

5)

Problem Setting Example (t =t,)

Company 2



51

Company 1

5)

Problem Setting Example (t =t,)

Company 2



51

Company 1

5)

Problem Setting Example (t = t,)

Company 2



51

Company 1

5)

Problem Setting Example (t = t,)

Company 2



51

Company 1

5)

Problem Setting Example (t = t,)

Company 2



Problem Setting Example (t = t,)

54

5,
Cq

)
51 5

Company 1 Company 2



Problem Setting Example (t = t,)




51

Company 1

5)

Problem Setting Example (t =t,)

Company 2



Problem Setting Example (t =t ,,)

5

51

Company 1

5)

Company 2



Problem Setting Example (t =t ,,)

5

51

Company 1

5)

Company 2



51

Problem Setting Example (t =t ,,)

5
Company 1 Company 2



Agenda

e Costs & Performance Measures



Costs & Performance Measures

* (Costs:
— K = major order cost
— k. =the minor order cost for company |
— h. =the unit holding cost for company |



Costs & Performance Measures

* (Costs:
— K = major order cost
— k. =the minor order cost for company |
— h. =the unit holding cost for company |



Costs & Performance Measures

* (Costs:
— K = major order cost
— k;=the minor order cost for company i
— h. =the unit holding cost for company /

* Performance measures of interest:

— The number of times company / orders first (K & k; are incurred)

— The number of times company / joins the order of company |
(only k; is incurred)



Costs & Performance Measures

* (Costs:
— K = major order cost
— k;=the minor order cost for company i
— h. =the unit holding cost for company /

* Performance measures of interest:
— The number of times company / orders first (K & k; are incurred)

— The number of times company / joins the order of company |
(only k; is incurred)

—>The order cost for both companies



Costs & Performance Measures

* (Costs:
— K = major order cost
— k;=the minor order cost for company i
— h. =the unit holding cost for company /

* Performance measures of interest:
— The number of times company / orders first (K & k; are incurred)

— The number of times company / joins the order of company |
(only k; is incurred)

—>The order cost for both companies
— The average inventory at company |



Costs & Performance Measures

* (Costs:
— K = major order cost
— k;=the minor order cost for company i
— h. =the unit holding cost for company /
* Performance measures of interest:

— The number of times company / orders first (K & k; are incurred)

— The number of times company / joins the order of company |
(only k; is incurred)

—>The order cost for both companies
— The average inventory at company |
= The inventory holding cost for both companies



Costs & Performance Measures

* (Costs:
— K = major order cost
— k;=the minor order cost for company i
— h. =the unit holding cost for company /
* Performance measures of interest:

— The number of times company / orders first (K & k; are incurred)

— The number of times company / joins the order of company |
(only k; is incurred)

—>The order cost for both companies
— The average inventory at company |
= The inventory holding cost for both companies

—> The total cost for both company given their (S,c,s) policy
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Methodology

* Goal = to find // the optimal (S,c,s) can-order policy
for both companies
* How:

1. Evaluate the performance of a single (S,c,s) policy
2. enumerate all policies in order to find the optimal policy

* Available methodologies:

— Simulation
— Markov chains
— A new approach?
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Methodology

e Simulation =too time-consuming

* Markov chains:
— State space can be represented by double (/, /,)
— State-space size is (5, x S,)
— For 5, =5, =1,000, the number of states equals 1,000,000
—>Markov chains cannot be used for real-life problems

— In addition, it is difficult to obtain the number of (first/joined)
orders using Markov chains

* A new approach:
— Also uses a Markov chain
— State-space size is at most (S, + S,)
— For S, =5, =1,000, the number of states equals at most 2,000
=500 times smaller!
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Law of competing
exponentials

! * There is a 10% probability that the next

:l A+ 4, customer visits company 1
XY * There is a 90% probability that the next

A‘ L] o
S customer visits company 2
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binomial distribution)
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We have a Markov chain that holds the probabilities
to move from one initial state towards another
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We have a Markov chain that holds the probabilities
to move from one initial state towards another
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From this Markov chain, we can obtain the steady-
state probabilities to visit one of the initial states!

a|6][a][5][4]a][4]3]3][6

Z oo || Zas || Zas || 73 || 736




We can use these steady-state probabilities to weigh the probability
to visit a regular state when departing from a given initial state
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We can use these steady-state probabilities to weigh the probability
to visit a regular state when departing from a given initial state
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We can use these steady-state probabilities to weigh the probability
to visit a regular state when departing from a given initial state

] ][a]ls] [+ ]a] =][3] = ]l&

T Tae || Zas || Zaa || a3 || 736
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Recall that the visit probabilities of the regular states can
easily be obtained using the binomial distribution
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We can use these steady-state probabilities to weigh the probability
to visit a regular state when departing from a given initial state

4"645444336

| T || a5 || Taa | %a3 || %6

We obtain the steady-state probabilities to visit any of the
regular states as the weighted sum of probabilities to visit the
regular states when departing from a given initial state

Using the steady-state probabilities to visit the regular states,
we can easily calculate the expected inventory at each company
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We can also use these steady-state probabilities to weigh the

probability to visit a final state when departing from an initial state
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Recall that the visit probabilities of the final states can
easily be obtained using the negative binomial distribution
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We can also use these steady-state probabilities to weigh the
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final states when departing from a given initial state




We can also use these steady-state probabilities to weigh the
probability to visit a final state when departing from an initial state

4"645444336

T Tae || Zas || Zaa || a3 || 736

Again, we obtain the steady-state probabilities to visit any of
the final states as the weighted sum of probabilities to visit the
final states when departing from a given initial state

Given the number of transitions it takes to move from an initial
state to a final state, we can calculate the number of times a
company places a single/joined order




Numerical Example: Conclusions

* If we use a regular Markov chain to model the
example:
— We end up with 24 states

— We cannot easily calculate the number of orders
(joined/single) for each company

* |f we use our new approach:
— We end up with a Markov chain of 5 states

— We can easily obtain both inventory holding costs and
order costs (i.e., the total cost of the coordination)
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Future/Current Research

 We can use our model to investigate/compare
the costs in a coordination and the standalone
costs (cfr. Valeria’s talk next session)

* Because our model is fast/efficient, we can use it
to study the characteristics of the optimal policy
in a two-company horizontal cooperation

* Lastly, we also relax the assumptions:

— Non-zero & non-exponential lead times

— Non-exponential customer interarrival times
— (S,c,Q) order policy

— Truck capacity constraints






