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First however…



Grover’s algorithm

• Imagine that we want to solve a discrete optimization 
problem that has 𝑛 decision variables.

• If decision variables are binary, there are 2𝑛 solutions.

• Our goal is to find a valid solution 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛} 
that respects all constraints of the optimization problem.

• To find a valid solution 𝒙, we can use  Grover’s 
algorithm equipped with a function 𝑓𝒙 that returns 1 if 
solution 𝒙 is valid (and 𝑓𝒙 = 0 otherwise; i.e., 𝑓𝒙 
checks whether 𝒙 respects all problem constraints).

• To find one of the 𝑚  valid solutions, Grover’s 
algorithm requires 𝜋4−1 2𝑛/𝑚  iterations (and 
hence calls to function 𝑓𝒙). 

• Compared to a classical algorithm that requires up 
to 2𝑛 calls to 𝑓𝒙 , Grover’s algorithm achieves a 
quadratic speedup (this is also optimal).

• In general, however, we don’t know 𝑚 ➔ we need a 
procedure that finds a valid solution if 𝑚 is unknown!



Grover’s algorithm for unknown 𝑚 (GUM)

• If 𝑚 is unknown, we can use Grover’s algorithm for 
different values of 𝑚 until we find a valid solution 
𝒙 (or until we are sufficiently certain that no valid 
solution can be found).

• If there are 𝑛 decision variables, GUM tries up to 
(𝑛 + 1) values of 𝑚.

• We show that GUM requires O 2𝑛  calls to 
function 𝑓𝒙 in order to return one of the 𝑚 valid 
solutions (but often has better than worst-case 
performance because a valid solution may already 
be found after a few iterations).

• Note that other approaches exist to sample 
different values of 𝑚 (see e.g., Boyer et al. 1996).
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Rather than sampling different values of 
𝑚, can we not just approximate 𝑚 itself 

using a quantum counting algorithm?



Quantum counting: Approximating 𝑚

• Let 𝚿 be a quantum system with 𝑛 qubits that 
corresponds to a discrete optimization problem 
that has 𝑛 binary decision variables.

• If we want to count the number of valid solutions 
𝑚 (i.e., the number of solutions 𝒙 for which 𝑓𝒙 =
1), we can use the quantum counting algorithm of 
Brassard et al. (1998).

• In this algorithm, we use Quantum Phase 
Estimation (QPE) to assess the change in the phase 
of system 𝚿 after applying unitary operator U on 
𝚿. The resulting estimate is stored in a set of 𝑡 
counting qubits and the precision of the estimate 
of 𝑚 depends on the size of 𝑡. After applying an 
inverse quantum Fourier transform (QFT†) on the 
𝑡 counting qubits, we obtain 𝑚.
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of 𝑚 depends on the size of 𝑡. After applying an 
inverse quantum Fourier transform (QFT†) on the 
𝑡 counting qubits, we obtain 𝑚.

Note that QPE is also used by, for 
instance, Shor. In the case of Shor, U 

represents a modular operation, and U𝑖 
can be obtained efficiently by modular 

exponentiation.



Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single 
iteration of Grover’s algorithm and exponentiation 
by squaring cannot be used to obtain U𝑖  (if 
exponentiation by squaring could be used to 
efficiently obtain U𝑖 , we could perform 
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need 
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations 
required by the quantum counting algorithm of 
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we 
roughly need 𝑡 = 𝑛 counting qubits and, therefore, 
2𝑡 = 2𝑛  Grover iterations (and hence calls to 
function 𝑓𝒙).
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equivalent to using a brute-force classical 

approach that also needs 2𝑛 calls to 
function 𝑓𝒙 to determine 𝑚.
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Is it really required, however, to 
accurately predict 𝑚? Perhaps it suffices 

to measure 𝑃 𝑚 > 0 .
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There are many quantum counting 
algorithms. For instance, the algorithm 

of Aaronson and Rall (2020), Suzuki et al. 
(2020), and Grinko et al. (2021). Do your 
results also hold for these algorithms?
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roughly need 𝑡 = 𝑛 counting qubits and, therefore, 
2𝑡 = 2𝑛  Grover iterations (and hence calls to 
function 𝑓𝒙).

You’re correct, there are indeed many 
quantum counting algorithms. However, 

we can show that GUM dominates any 
(quantum) counting algorithm when 

approximating 𝑃 𝑚 > 0 .
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Nested quantum search

• Rather than searching the entire solution space, a 
nested search ``nests’’ one search within another. 
This way, partial solutions (that are obtained 
efficiently) are used to build other partial solutions 
that in turn are used to build an optimal solution. 

• Classical nested search requires O 2𝛾𝑛  calls to a 
function 𝑓𝒙, where 𝛾 is some number less than 1 
that depends on the level of nesting as well as the 
characteristics of the problem instance.

• Cerf et al. (2000) proposed the idea of a nested 
quantum search that has complexity O 2𝛾𝑛 .

• To illustrate the quantum nesting algorithm of Cerf 
et al., let’s try to find a single valid solution (i.e., 𝑚 =
1) in a set of 2𝑛 solutions. To keep things simple, we 
assume a single level of nesting.



Nested quantum search

• The required circuit is given on the left. In this circuit:

• 𝑓𝒙1𝑖 = 1 if 𝒙1𝑖 = {𝑥1, … , 𝑥𝑖} corresponds to the 
first 𝑖 decision variables of the optimal solution.

• 𝑓𝒙 𝑖+1 𝑛 = 1  if 𝒙 𝑖+1 𝑛 = {𝑥(𝑖+1), … , 𝑥𝑛} 
corresponds to the last (𝑛 − 𝑖)  decision 
variables of the optimal solution.

• The second part of the circuit (in red) is only 
executed for those basis states for which 
𝑓𝒙1𝑖 = 1.

• The proposed speedup originates from: 

• Less Grover iterations are needed in total 

(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛). 

• Grover iterations are performed on 
smaller systems (with less qubits; i.e., 
systems with 𝑖 and (𝑛 − 𝑖) qubits rather 
than one big system that has 𝑛 qubits).
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smaller systems (with less qubits; i.e., 
systems with 𝑖 and (𝑛 − 𝑖) qubits rather 
than one big system that has 𝑛 qubits).

Wow! That is really nice! We can use 
nested quantum search to further speed 

up Grover’s algorithm?
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smaller systems (with less qubits; i.e., 
systems with 𝑖 and (𝑛 − 𝑖) qubits rather 
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Unfortunately, there are several problems 
with this approach. Most importantly, we 
are able to show that it is impossible to 

implement 𝑓𝒙1𝑖 and 𝑓𝒙 𝑖+1 𝑛 efficiently (if 
we could implement these functions 

efficiently, we could perform unstructured 
search faster than Grover’s algorithm; 

which is not possible).
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In fact, we show that a general function 
𝑓𝒙𝑖𝑗 (that evaluates whether decision 

variables 𝒙1𝑖 = {𝑥𝑖 , … , 𝑥𝑗} correspond to 

an optimal solution) cannot be 

implemented using less than O 2𝑛  

operations. Which is a rather nice result!
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(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛). 

• Grover iterations are performed on 
smaller systems (with less qubits; i.e., 
systems with 𝑖 and (𝑛 − 𝑖) qubits rather 
than one big system that has 𝑛 qubits).

Last but not least, we can show that a 
nested quantum search is dominated by 

a classical nested search that uses a 
procedure such as GUM to perform a 

partial search.
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Amplitude amplification: Concept

• Grover’s algorithm initializes a system of 𝑛 qubits 
using a uniform superposition where all 2𝑛 
solutions have an equal probability of being 
measured.

• Given this initial uniform superposition, Grover’s 

algorithm needs 𝜋4−1 2𝑛/𝑚  iterations to find 
one of the 𝑚 valid solutions.

• Amplitude amplification tries to look for better 
initial superpositions such that less iterations (and 
hence less calls to function 𝑓𝒙) are required to find 
a valid solution. 

• Good news: these initial superpositions do exist!

• Bad news: we perform a number of experiments to 
show that it may not be that easy to identify these 
“good” superpositions. 



Conclusions

• Quantum computing may perhaps cause a revolution in the field of discrete 
optimization. However, this revolution will probably not involve:
• Quantum counting algorithms.

• Nested quantum search algorithms.

• Amplitude amplification.

• The detailed results of this study are available on SSRN and on my personal 
website (www.cromso.com).

• If you have any further questions, contact us:
• sc@cromso.com

• l.fernando@ieseg.fr 

http://www.cromso.com/
mailto:sc@cromso.com
mailto:l.fernando@ieseg.fr
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Amplitude amplification: Experiment 1

• In a first experiment, we evaluate 1000 random 
superpositions for 𝑛 ∈ 6,10,14  and verify how 
many of them require less iterations than a 
uniform superposition to measure one of the 𝑚 ∈
1, 2𝑛/32 valid solutions.

• The results of experiment 1 are presented in the figure 
on the left (the blue line represents the performance of 
Grover’s algorithm). From this figure, we can conclude:

• If 𝑚 = 1 , roughly 30% of the superpositions 
require less iterations than a uniform superposition.

• If the proportion of valid solutions increases, it 
becomes more difficult to find superpositions 
that outperform the uniform superposition.

• The downside risk is far bigger than the upside 
potential (i.e., the potential increase in number of 
iterations is far bigger than the potential decrease).
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Grover’s algorithm). From this figure, we can conclude:

• If 𝑚 = 1 , roughly 30% of the superpositions 
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• If the proportion of valid solutions increases, it 
becomes more difficult to find superpositions 
that outperform the uniform superposition.

• The downside risk is far bigger than the upside 
potential (i.e., the potential increase in number of 
iterations is far bigger than the potential decrease).

It seems that:
1. If 𝑚 = 1,  it is unlikely to (significantly) 

improve upon the uniform superposition.
2. For larger 𝑚,  it becomes impossible to 

improve upon the uniform superposition.



Amplitude amplification: Experiment 2

• In a second experiment, for 𝑛 ∈ 6,10 , we 
compare 1000 random superpositions and 1000 
superpositions that improve upon the uniform 
superposition. We compare:

• The average probability amplitude (expected 
to be zero in case of random superpositions).

• The standard deviation of the probability 
amplitudes.

• The results of the experiment are presented on the 
figure on the left (random superpositions are 
indicated in dark grey and superpositions that 
improve are indicated in light grey).
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between random superpositions and 

superpositions that improve the uniform 
superposition ➔ it may be very difficult 

to find these “good” superpositions!



Amplitude amplification: Experiment 3

• In a third experiment, for 𝑛 ∈ 6,10 , we compare 
1000 random superpositions and 1000 
superpositions that improve upon the uniform 
superposition.

• We compare the correlation with the optimal 
superposition (i.e., the superposition where the 
probability amplitude of qubit 𝑖 is 1 if decision 
variable 𝑖 is 1 and 0 otherwise). 

• For random superpositions, we expect this 
correlation to be 0. For superpositions that improve 
upon the uniform superposition, on the other hand, 
we might expect that there is a positive correlation.

• The results of the experiment are presented on the 
figure on the left (random superpositions are 
indicated in dark grey and superpositions that 
improve are indicated in light grey).
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It seems there is no correlation between 
random superpositions and the optimal 

superposition (as expected). However, there 
also is no correlation between superpositions 
that improve the uniform superposition and 

the optimal superposition.
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Last but not least, note that for 
unstructured search (i.e., Grover’s 

problem) it is not possible to outperform 
the uniform superposition (i.e., 

amplitude amplification cannot be used 
to solve this problem more efficiently).
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• In a third experiment, for 𝑛 ∈ 6,10 , we compare 
1000 random superpositions and 1000 
superpositions that improve upon the uniform 
superposition.

• We compare the correlation with the optimal 
superposition (i.e., the superposition where the 
probability amplitude of qubit 𝑖 is 1 if decision 
variable 𝑖 is 1 and 0 otherwise). 

• For random superpositions, we expect this 
correlation to be 0. For superpositions that improve 
upon the uniform superposition, on the other hand, 
we might expect that there is a positive correlation.

• The results of the experiment are presented on the 
figure on the left (random superpositions are 
indicated in dark grey and superpositions that 
improve are indicated in light grey).

Interesting! This implies that amplitude 
amplification may not be able to outperform 
a simple procedure such as GUM (that relies 

on Grover’s algorithm)!

Last but not least, note that for 
unstructured search (i.e., Grover’s 

problem) it is not possible to outperform 
the uniform superposition (i.e., 

amplitude amplification cannot be used 
to solve this problem more efficiently).
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