
Discrete Optimization
Limitations of Existing Quantum Algorithms

Stefan Creemers
Luis Fernando Pérez

Quantum annealing

Quantum
counting

Quantum
factorization

Quantum
simulation

Quantum
machine learning

Nested quantum
search

Amplitude
amplification

Universal quantum computer

Quantum Computing

Discrete optimization problems

First however…

Grover’s algorithm

• Imagine that we want to solve a discrete optimization
problem that has 𝑛 decision variables.

• If decision variables are binary, there are 2𝑛 solutions.

• Our goal is to find a valid solution 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛}
that respects all constraints of the optimization problem.

• To find a valid solution 𝒙, we can use Grover’s
algorithm equipped with a function 𝑓𝒙 that returns 1 if
solution 𝒙 is valid (and 𝑓𝒙 = 0 otherwise; i.e., 𝑓𝒙
checks whether 𝒙 respects all problem constraints).

• To find one of the 𝑚 valid solutions, Grover’s
algorithm requires 𝜋4−1 2𝑛/𝑚 iterations (and
hence calls to function 𝑓𝒙).

• Compared to a classical algorithm that requires up
to 2𝑛 calls to 𝑓𝒙 , Grover’s algorithm achieves a
quadratic speedup (this is also optimal).

• In general, however, we don’t know 𝑚 ➔ we need a
procedure that finds a valid solution if 𝑚 is unknown!

Grover’s algorithm for unknown 𝑚 (GUM)

• If 𝑚 is unknown, we can use Grover’s algorithm for
different values of 𝑚 until we find a valid solution
𝒙 (or until we are sufficiently certain that no valid
solution can be found).

• If there are 𝑛 decision variables, GUM tries up to
(𝑛 + 1) values of 𝑚.

• We show that GUM requires O 2𝑛 calls to
function 𝑓𝒙 in order to return one of the 𝑚 valid
solutions (but often has better than worst-case
performance because a valid solution may already
be found after a few iterations).

• Note that other approaches exist to sample
different values of 𝑚 (see e.g., Boyer et al. 1996).

Grover’s algorithm for unknown 𝑚 (GUM)

• If 𝑚 is unknown, we can use Grover’s algorithm for
different values of 𝑚 until we find a valid solution
𝒙 (or until we are sufficiently certain that no valid
solution can be found).

• If there are 𝑛 decision variables, GUM tries up to
(𝑛 + 1) values of 𝑚.

• We show that GUM requires O 2𝑛 calls to
function 𝑓𝒙 in order to return one of the 𝑚 valid
solutions (but often has better than worst-case
performance because a valid solution may already
be found after a few iterations).

• Note that other approaches exist to sample
different values of 𝑚 (see e.g., Boyer et al. 1996).

Rather than sampling different values of
𝑚, can we not just approximate 𝑚 itself

using a quantum counting algorithm?

Quantum counting: Approximating 𝑚

• Let 𝚿 be a quantum system with 𝑛 qubits that
corresponds to a discrete optimization problem
that has 𝑛 binary decision variables.

• If we want to count the number of valid solutions
𝑚 (i.e., the number of solutions 𝒙 for which 𝑓𝒙 =
1), we can use the quantum counting algorithm of
Brassard et al. (1998).

• In this algorithm, we use Quantum Phase
Estimation (QPE) to assess the change in the phase
of system 𝚿 after applying unitary operator U on
𝚿. The resulting estimate is stored in a set of 𝑡
counting qubits and the precision of the estimate
of 𝑚 depends on the size of 𝑡. After applying an
inverse quantum Fourier transform (QFT†) on the
𝑡 counting qubits, we obtain 𝑚.

Quantum counting: Approximating 𝑚

• Let 𝚿 be a quantum system with 𝑛 qubits that
corresponds to a discrete optimization problem
that has 𝑛 binary decision variables.

• If we want to count the number of valid solutions
𝑚 (i.e., the number of solutions 𝒙 for which 𝑓𝒙 =
1), we can use the quantum counting algorithm of
Brassard et al. (1998).

• In this algorithm, we use Quantum Phase
Estimation (QPE) to assess the change in the phase
of system 𝚿 after applying unitary operator U on
𝚿. The resulting estimate is stored in a set of 𝑡
counting qubits and the precision of the estimate
of 𝑚 depends on the size of 𝑡. After applying an
inverse quantum Fourier transform (QFT†) on the
𝑡 counting qubits, we obtain 𝑚.

Note that QPE is also used by, for
instance, Shor. In the case of Shor, U

represents a modular operation, and U𝑖
can be obtained efficiently by modular

exponentiation.

Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single
iteration of Grover’s algorithm and exponentiation
by squaring cannot be used to obtain U𝑖 (if
exponentiation by squaring could be used to
efficiently obtain U𝑖 , we could perform
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations
required by the quantum counting algorithm of
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we
roughly need 𝑡 = 𝑛 counting qubits and, therefore,
2𝑡 = 2𝑛 Grover iterations (and hence calls to
function 𝑓𝒙).

Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single
iteration of Grover’s algorithm and exponentiation
by squaring cannot be used to obtain U𝑖 (if
exponentiation by squaring could be used to
efficiently obtain U𝑖 , we could perform
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations
required by the quantum counting algorithm of
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we
roughly need 𝑡 = 𝑛 counting qubits and, therefore,
2𝑡 = 2𝑛 Grover iterations (and hence calls to
function 𝑓𝒙).

As a result, If we use the quantum counting
algorithm of Brassard et al. to approximate
𝑚, we need 2𝑛 calls to function 𝑓𝒙. This is
equivalent to using a brute-force classical

approach that also needs 2𝑛 calls to
function 𝑓𝒙 to determine 𝑚.

Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single
iteration of Grover’s algorithm and exponentiation
by squaring cannot be used to obtain U𝑖 (if
exponentiation by squaring could be used to
efficiently obtain U𝑖 , we could perform
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations
required by the quantum counting algorithm of
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we
roughly need 𝑡 = 𝑛 counting qubits and, therefore,
2𝑡 = 2𝑛 Grover iterations (and hence calls to
function 𝑓𝒙).

As a result, If we use the quantum counting
algorithm of Brassard et al. to approximate
𝑚, we need 2𝑛 calls to function 𝑓𝒙. This is
equivalent to using a brute-force classical

approach that also needs 2𝑛 calls to
function 𝑓𝒙 to determine 𝑚.

Is it really required, however, to
accurately predict 𝑚? Perhaps it suffices

to measure 𝑃 𝑚 > 0 .

Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single
iteration of Grover’s algorithm and exponentiation
by squaring cannot be used to obtain U𝑖 (if
exponentiation by squaring could be used to
efficiently obtain U𝑖 , we could perform
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations
required by the quantum counting algorithm of
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we
roughly need 𝑡 = 𝑛 counting qubits and, therefore,
2𝑡 = 2𝑛 Grover iterations (and hence calls to
function 𝑓𝒙).

We can also show that GUM dominates
the quantum counting algorithm of
Brassard et al. when approximating

𝑃 𝑚 > 0 .

Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single
iteration of Grover’s algorithm and exponentiation
by squaring cannot be used to obtain U𝑖 (if
exponentiation by squaring could be used to
efficiently obtain U𝑖 , we could perform
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations
required by the quantum counting algorithm of
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we
roughly need 𝑡 = 𝑛 counting qubits and, therefore,
2𝑡 = 2𝑛 Grover iterations (and hence calls to
function 𝑓𝒙).

There are many quantum counting
algorithms. For instance, the algorithm

of Aaronson and Rall (2020), Suzuki et al.
(2020), and Grinko et al. (2021). Do your
results also hold for these algorithms?

Quantum counting: Approximating 𝑚

• In our case, however, U corresponds to a single
iteration of Grover’s algorithm and exponentiation
by squaring cannot be used to obtain U𝑖 (if
exponentiation by squaring could be used to
efficiently obtain U𝑖 , we could perform
unstructured search in polynomial time).

• Instead, in order to obtain U𝑖, we effectively need
to perform 𝑖 Grover iterations.

• As a result, the number of Grover iterations
required by the quantum counting algorithm of
Brassard et al. is: σ𝑖=0

𝑡−1 2𝑖 ≈ 2𝑡.

• Unfortunately, to accurately approximate 𝑚, we
roughly need 𝑡 = 𝑛 counting qubits and, therefore,
2𝑡 = 2𝑛 Grover iterations (and hence calls to
function 𝑓𝒙).

You’re correct, there are indeed many
quantum counting algorithms. However,

we can show that GUM dominates any
(quantum) counting algorithm when

approximating 𝑃 𝑚 > 0 .

Quantum annealing

Quantum
counting

Quantum
factorization

Quantum
simulation

Quantum
machine learning

Nested quantum
search

Amplitude
amplification

Universal quantum computer

Quantum Computing

Discrete optimization problems

Nested quantum search

• Rather than searching the entire solution space, a
nested search ``nests’’ one search within another.
This way, partial solutions (that are obtained
efficiently) are used to build other partial solutions
that in turn are used to build an optimal solution.

• Classical nested search requires O 2𝛾𝑛 calls to a
function 𝑓𝒙, where 𝛾 is some number less than 1
that depends on the level of nesting as well as the
characteristics of the problem instance.

• Cerf et al. (2000) proposed the idea of a nested
quantum search that has complexity O 2𝛾𝑛 .

• To illustrate the quantum nesting algorithm of Cerf
et al., let’s try to find a single valid solution (i.e., 𝑚 =
1) in a set of 2𝑛 solutions. To keep things simple, we
assume a single level of nesting.

Nested quantum search

• The required circuit is given on the left. In this circuit:

• 𝑓𝒙1𝑖 = 1 if 𝒙1𝑖 = {𝑥1, … , 𝑥𝑖} corresponds to the
first 𝑖 decision variables of the optimal solution.

• 𝑓𝒙 𝑖+1 𝑛 = 1 if 𝒙 𝑖+1 𝑛 = {𝑥(𝑖+1), … , 𝑥𝑛}
corresponds to the last (𝑛 − 𝑖) decision
variables of the optimal solution.

• The second part of the circuit (in red) is only
executed for those basis states for which
𝑓𝒙1𝑖 = 1.

• The proposed speedup originates from:

• Less Grover iterations are needed in total

(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛).

• Grover iterations are performed on
smaller systems (with less qubits; i.e.,
systems with 𝑖 and (𝑛 − 𝑖) qubits rather
than one big system that has 𝑛 qubits).

Nested quantum search

• The required circuit is given on the left. In this circuit:

• 𝑓𝒙1𝑖 = 1 if 𝒙1𝑖 = {𝑥1, … , 𝑥𝑖} corresponds to the
first 𝑖 decision variables of the optimal solution.

• 𝑓𝒙 𝑖+1 𝑛 = 1 if 𝒙 𝑖+1 𝑛 = {𝑥(𝑖+1), … , 𝑥𝑛}
corresponds to the last (𝑛 − 𝑖) decision
variables of the optimal solution.

• The second part of the circuit (in red) is only
executed for those basis states for which
𝑓𝒙1𝑖 = 1.

• The proposed speedup originates from:

• Less Grover iterations are needed in total

(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛).

• Grover iterations are performed on
smaller systems (with less qubits; i.e.,
systems with 𝑖 and (𝑛 − 𝑖) qubits rather
than one big system that has 𝑛 qubits).

Wow! That is really nice! We can use
nested quantum search to further speed

up Grover’s algorithm?

Nested quantum search

• The required circuit is given on the left. In this circuit:

• 𝑓𝒙1𝑖 = 1 if 𝒙1𝑖 = {𝑥1, … , 𝑥𝑖} corresponds to the
first 𝑖 decision variables of the optimal solution.

• 𝑓𝒙 𝑖+1 𝑛 = 1 if 𝒙 𝑖+1 𝑛 = {𝑥(𝑖+1), … , 𝑥𝑛}
corresponds to the last (𝑛 − 𝑖) decision
variables of the optimal solution.

• The second part of the circuit (in red) is only
executed for those basis states for which
𝑓𝒙1𝑖 = 1.

• The proposed speedup originates from:

• Less Grover iterations are needed in total

(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛).

• Grover iterations are performed on
smaller systems (with less qubits; i.e.,
systems with 𝑖 and (𝑛 − 𝑖) qubits rather
than one big system that has 𝑛 qubits).

Unfortunately, there are several problems
with this approach. Most importantly, we
are able to show that it is impossible to

implement 𝑓𝒙1𝑖 and 𝑓𝒙 𝑖+1 𝑛 efficiently (if
we could implement these functions

efficiently, we could perform unstructured
search faster than Grover’s algorithm;

which is not possible).

Nested quantum search

• The required circuit is given on the left. In this circuit:

• 𝑓𝒙1𝑖 = 1 if 𝒙1𝑖 = {𝑥1, … , 𝑥𝑖} corresponds to the
first 𝑖 decision variables of the optimal solution.

• 𝑓𝒙 𝑖+1 𝑛 = 1 if 𝒙 𝑖+1 𝑛 = {𝑥(𝑖+1), … , 𝑥𝑛}
corresponds to the last (𝑛 − 𝑖) decision
variables of the optimal solution.

• The second part of the circuit (in red) is only
executed for those basis states for which
𝑓𝒙1𝑖 = 1.

• The proposed speedup originates from:

• Less Grover iterations are needed in total

(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛).

• Grover iterations are performed on
smaller systems (with less qubits; i.e.,
systems with 𝑖 and (𝑛 − 𝑖) qubits rather
than one big system that has 𝑛 qubits).

In fact, we show that a general function
𝑓𝒙𝑖𝑗 (that evaluates whether decision

variables 𝒙1𝑖 = {𝑥𝑖 , … , 𝑥𝑗} correspond to

an optimal solution) cannot be

implemented using less than O 2𝑛

operations. Which is a rather nice result!

Nested quantum search

• The required circuit is given on the left. In this circuit:

• 𝑓𝒙1𝑖 = 1 if 𝒙1𝑖 = {𝑥1, … , 𝑥𝑖} corresponds to the
first 𝑖 decision variables of the optimal solution.

• 𝑓𝒙 𝑖+1 𝑛 = 1 if 𝒙 𝑖+1 𝑛 = {𝑥(𝑖+1), … , 𝑥𝑛}
corresponds to the last (𝑛 − 𝑖) decision
variables of the optimal solution.

• The second part of the circuit (in red) is only
executed for those basis states for which
𝑓𝒙1𝑖 = 1.

• The proposed speedup originates from:

• Less Grover iterations are needed in total

(i.e., 2𝑖 + 2(𝑛−𝑖) ≤ 2𝑛).

• Grover iterations are performed on
smaller systems (with less qubits; i.e.,
systems with 𝑖 and (𝑛 − 𝑖) qubits rather
than one big system that has 𝑛 qubits).

Last but not least, we can show that a
nested quantum search is dominated by

a classical nested search that uses a
procedure such as GUM to perform a

partial search.

Quantum annealing

Quantum
counting

Quantum
factorization

Quantum
simulation

Quantum
machine learning

Nested quantum
search

Amplitude
amplification

Universal quantum computer

Quantum Computing

Discrete optimization problems

Amplitude amplification: Concept

• Grover’s algorithm initializes a system of 𝑛 qubits
using a uniform superposition where all 2𝑛
solutions have an equal probability of being
measured.

• Given this initial uniform superposition, Grover’s

algorithm needs 𝜋4−1 2𝑛/𝑚 iterations to find
one of the 𝑚 valid solutions.

• Amplitude amplification tries to look for better
initial superpositions such that less iterations (and
hence less calls to function 𝑓𝒙) are required to find
a valid solution.

• Good news: these initial superpositions do exist!

• Bad news: we perform a number of experiments to
show that it may not be that easy to identify these
“good” superpositions.

Conclusions

• Quantum computing may perhaps cause a revolution in the field of discrete
optimization. However, this revolution will probably not involve:
• Quantum counting algorithms.

• Nested quantum search algorithms.

• Amplitude amplification.

• The detailed results of this study are available on SSRN and on my personal
website (www.cromso.com).

• If you have any further questions, contact us:
• sc@cromso.com

• l.fernando@ieseg.fr

http://www.cromso.com/
mailto:sc@cromso.com
mailto:l.fernando@ieseg.fr

EURO 2024 Copenhagen:
Session on quantum computing

Invitation code:
7586e1c4

Stream:
Quantum Computing

Optimization

Session:
Quantum Computing &

Optimization III

Amplitude amplification: Experiment 1

• In a first experiment, we evaluate 1000 random
superpositions for 𝑛 ∈ 6,10,14 and verify how
many of them require less iterations than a
uniform superposition to measure one of the 𝑚 ∈
1, 2𝑛/32 valid solutions.

• The results of experiment 1 are presented in the figure
on the left (the blue line represents the performance of
Grover’s algorithm). From this figure, we can conclude:

• If 𝑚 = 1 , roughly 30% of the superpositions
require less iterations than a uniform superposition.

• If the proportion of valid solutions increases, it
becomes more difficult to find superpositions
that outperform the uniform superposition.

• The downside risk is far bigger than the upside
potential (i.e., the potential increase in number of
iterations is far bigger than the potential decrease).

Amplitude amplification: Experiment 1

• In a first experiment, we evaluate 1000 random
superpositions for 𝑛 ∈ 6,10,14 and verify how
many of them require less iterations than a
uniform superposition to measure one of the 𝑚 ∈
1, 2𝑛/32 valid solutions.

• The results of experiment 1 are presented in the figure
on the left (the blue line represents the performance of
Grover’s algorithm). From this figure, we can conclude:

• If 𝑚 = 1 , roughly 30% of the superpositions
require less iterations than a uniform superposition.

• If the proportion of valid solutions increases, it
becomes more difficult to find superpositions
that outperform the uniform superposition.

• The downside risk is far bigger than the upside
potential (i.e., the potential increase in number of
iterations is far bigger than the potential decrease).

It seems that:
1. If 𝑚 = 1, it is unlikely to (significantly)

improve upon the uniform superposition.
2. For larger 𝑚, it becomes impossible to

improve upon the uniform superposition.

Amplitude amplification: Experiment 2

• In a second experiment, for 𝑛 ∈ 6,10 , we
compare 1000 random superpositions and 1000
superpositions that improve upon the uniform
superposition. We compare:

• The average probability amplitude (expected
to be zero in case of random superpositions).

• The standard deviation of the probability
amplitudes.

• The results of the experiment are presented on the
figure on the left (random superpositions are
indicated in dark grey and superpositions that
improve are indicated in light grey).

Amplitude amplification: Experiment 2

• In a second experiment, for 𝑛 ∈ 6,10 , we
compare 1000 random superpositions and 1000
superpositions that improve upon the uniform
superposition. We compare:

• The average probability amplitude (expected
to be zero in case of random superpositions).

• The standard deviation of the probability
amplitudes.

• The results of the experiment are presented on the
figure on the left (random superpositions are
indicated in dark grey and superpositions that
improve are indicated in light grey).

It seems there is no statistical difference
between random superpositions and

superpositions that improve the uniform
superposition ➔ it may be very difficult

to find these “good” superpositions!

Amplitude amplification: Experiment 3

• In a third experiment, for 𝑛 ∈ 6,10 , we compare
1000 random superpositions and 1000
superpositions that improve upon the uniform
superposition.

• We compare the correlation with the optimal
superposition (i.e., the superposition where the
probability amplitude of qubit 𝑖 is 1 if decision
variable 𝑖 is 1 and 0 otherwise).

• For random superpositions, we expect this
correlation to be 0. For superpositions that improve
upon the uniform superposition, on the other hand,
we might expect that there is a positive correlation.

• The results of the experiment are presented on the
figure on the left (random superpositions are
indicated in dark grey and superpositions that
improve are indicated in light grey).

Amplitude amplification: Experiment 3

• In a third experiment, for 𝑛 ∈ 6,10 , we compare
1000 random superpositions and 1000
superpositions that improve upon the uniform
superposition.

• We compare the correlation with the optimal
superposition (i.e., the superposition where the
probability amplitude of qubit 𝑖 is 1 if decision
variable 𝑖 is 1 and 0 otherwise).

• For random superpositions, we expect this
correlation to be 0. For superpositions that improve
upon the uniform superposition, on the other hand,
we might expect that there is a positive correlation.

• The results of the experiment are presented on the
figure on the left (random superpositions are
indicated in dark grey and superpositions that
improve are indicated in light grey).

It seems there is no correlation between
random superpositions and the optimal

superposition (as expected). However, there
also is no correlation between superpositions
that improve the uniform superposition and

the optimal superposition.

Amplitude amplification: Experiment 3

• In a third experiment, for 𝑛 ∈ 6,10 , we compare
1000 random superpositions and 1000
superpositions that improve upon the uniform
superposition.

• We compare the correlation with the optimal
superposition (i.e., the superposition where the
probability amplitude of qubit 𝑖 is 1 if decision
variable 𝑖 is 1 and 0 otherwise).

• For random superpositions, we expect this
correlation to be 0. For superpositions that improve
upon the uniform superposition, on the other hand,
we might expect that there is a positive correlation.

• The results of the experiment are presented on the
figure on the left (random superpositions are
indicated in dark grey and superpositions that
improve are indicated in light grey).

Last but not least, note that for
unstructured search (i.e., Grover’s

problem) it is not possible to outperform
the uniform superposition (i.e.,

amplitude amplification cannot be used
to solve this problem more efficiently).

Amplitude amplification: Experiment 3

• In a third experiment, for 𝑛 ∈ 6,10 , we compare
1000 random superpositions and 1000
superpositions that improve upon the uniform
superposition.

• We compare the correlation with the optimal
superposition (i.e., the superposition where the
probability amplitude of qubit 𝑖 is 1 if decision
variable 𝑖 is 1 and 0 otherwise).

• For random superpositions, we expect this
correlation to be 0. For superpositions that improve
upon the uniform superposition, on the other hand,
we might expect that there is a positive correlation.

• The results of the experiment are presented on the
figure on the left (random superpositions are
indicated in dark grey and superpositions that
improve are indicated in light grey).

Interesting! This implies that amplitude
amplification may not be able to outperform
a simple procedure such as GUM (that relies

on Grover’s algorithm)!

Last but not least, note that for
unstructured search (i.e., Grover’s

problem) it is not possible to outperform
the uniform superposition (i.e.,

amplitude amplification cannot be used
to solve this problem more efficiently).

	Slide 1
	Slide 2
	Slide 3: First however…
	Slide 4: Grover’s algorithm
	Slide 5: Grover’s algorithm for unknown m (GUM)
	Slide 6: Grover’s algorithm for unknown m (GUM)
	Slide 7: Quantum counting: Approximating m
	Slide 8: Quantum counting: Approximating m
	Slide 9: Quantum counting: Approximating m
	Slide 10: Quantum counting: Approximating m
	Slide 11: Quantum counting: Approximating m
	Slide 12: Quantum counting: Approximating m
	Slide 13: Quantum counting: Approximating m
	Slide 14: Quantum counting: Approximating m
	Slide 15
	Slide 16: Nested quantum search
	Slide 17: Nested quantum search
	Slide 18: Nested quantum search
	Slide 19: Nested quantum search
	Slide 20: Nested quantum search
	Slide 21: Nested quantum search
	Slide 22
	Slide 23: Amplitude amplification: Concept
	Slide 24: Conclusions
	Slide 25: EURO 2024 Copenhagen: Session on quantum computing
	Slide 26: Amplitude amplification: Experiment 1
	Slide 27: Amplitude amplification: Experiment 1
	Slide 28: Amplitude amplification: Experiment 2
	Slide 29: Amplitude amplification: Experiment 2
	Slide 30: Amplitude amplification: Experiment 3
	Slide 31: Amplitude amplification: Experiment 3
	Slide 32: Amplitude amplification: Experiment 3
	Slide 33: Amplitude amplification: Experiment 3

