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Abstract - The literature on project scheduling with uncertain
activity durations is still in its burn-in phase. We examine project
scheduling with net-present-value objective and exponential activ-
ity durations by means of a backward stochastic dynamic program-
ming recursion. We examine the particular setting in which the
individual activities carry a risk of failure, and where an activity’s
failure results in the project’s overall failure. In the project plan-
ning and scheduling literature, this technological uncertainty has
typically been ignored and project plans are developed only for
scenarios in which the project succeeds.
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1 Introduction

Project management is a management discipline that is receiving a contin-
uously growing amount of attention; [17, 20] are comprehensive references.
Both in production and in service sectors, ever more organizations adhere to
project-based organization and work, within a very wide variety of applica-
tions: research and development (R&D), software development, construction,
public infrastructure, process re-engineering, maintenance operations, . . . A
project itself can be informally defined as a unique undertaking, consisting of
a complex set of precedence-related activities that have to be executed using
diverse and mostly limited company resources. Project management deals
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with the selection and initiation of projects, as well as with their operation
and control. Project scheduling, as a part of project management, is aimed
at (a) deciding when in time to start (and finish) which activities and (b)
the allocation of scarce resources to the project activities. In this paper, our
focus will lie on function (a) of project scheduling.

During project execution, project activities are often subject to consid-
erable uncertainty, which results from many different possible sources: ac-
tivities may take more or less time than originally estimated, resources may
become unavailable, material may arrive behind schedule, workers may be
absent, etc. In this text we examine the case where this uncertainty is im-
portant enough to be incorporated into the planning phase. The sources of
variability in processing times are manifold; nevertheless, the main schedul-
ing objectives are mostly functions of the activity starting- (or ending-)times,
which justifies a restriction to the study of uncertainty in processing times
only, although many different sources may be at the basis of this variability.

In the absence of resource constraints, the minimum-makespan objective
requires no real scheduling effort: all activities are started as soon as their
predecessors are completed. The literature on this so-called PERT problem
is usually concerned with the computation of certain characteristics of the
minimum project makespan (earliest project completion) when the activity
durations are random variables, mainly with exact computation, approxi-
mation and bounding of the distribution function and the expected value
[1, 11, 18, 19].

Most firms undertake projects with the goal of making a profit, and
project profitability is often measured by its net present value (NPV), the
discounted value of the project’s cash flows [5]. However, NPV is affected by
the project schedule and in capital-intensive industries, the timing of expen-
ditures has a major impact on project feasibility and profitability. Scheduling
projects to maximize NPV in a deterministic setting has been studied under
a broad range of contractual arrangements and planning constraints (see [14]
for a review), but often in practice there is significant uncertainty, which was
the motivation for Tilson et al. [22] to investigate project scheduling with
stochastic activity durations to maximize expected NPV; a similar problem
is studied by Benati [4]. The paper by Tilson et al. is most relevant to our
setting since it describes how to find the best from a finite set of schedul-
ing policies (for definitions see infra), while Benati only proposes a heuristic
scheduling rule. Buss and Rosenblatt [7] also maximize a project’s expected
NPV and additionally consider activity delays.
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Time/resource trade-offs with stochastic activity durations, in which the
resource allocation influences the mean and/or the variance of the durations,
are investigated in [3, 6, 12, 13, 23], amongst others. Kulkarni and Adlakha
[18] also suggest an extension of their model towards such time/resource
trade-offs, which was later examined in more detail by Azaron et al. [3]. In
the current paper we will not be concerned with resource allocation and as-
sume that such decisions have already been made at a higher hierarchical
decision level. On the other hand, we will incorporate the concept of activity
success or failure. For this text, the most relevant source of literature for this
concept stems from the discipline of chemical engineering, most notably the
work by Grossmann and his colleagues [21, 16], who initiated the work on
scheduling failure-prone NPD (new product development) testing tasks when
also non-sequential testing is admitted. They point out that in many indus-
tries, including the chemical and pharmaceutical sectors, a number of the
tasks involved in producing a new product are regulatory requirements such
as environmental and safety tests. The failure of a single required test may
prevent a potential product from reaching the marketplace. This positions
our work especially within the context of R&D: an important feature of R&D
projects is that, apart from the commercial and market risks common to all
projects, their constituent activities also carry the risk of technical failure.
Therefore, besides projects overrunning their budgets or deadlines and the
commercial returns not meeting their targets, such projects also carry the
risk of failing altogether, resulting in time and resources spent without any
tangible return; failure in one more activities leads to overall project termi-
nation. Our models are of particular interest to drug-development projects
in the pharmaceutical industry, in which stringent scientific procedures have
to be followed to ensure patient safety in distinct stages before a medicine
can be approved for production. The project may need to be terminated in
any of these stages, either because the product is revealed not to have the
desired properties or because of harmful side effects.

In this text we examine the case where all activity cash flows during the
development phase are negative, which is typical for R&D projects. The
following insight is key when activity failures occur: if activity A ends no
later than the start of activity B, then knowledge of the outcome (success
or failure) of A can be used to reduce the expected cash outlay for activity
B, since a failure in A would allow to abandon the project without investing
in B. For a given selection of such ‘information flows’ (under the form of
additional precedence constraints), a late-start schedule is then optimal when
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the activity durations are known. Unfortunately, such late-start scheduling
is difficult to implement in case of stochastic durations, and Tilson et al. [22]
implicitly restrict their attention to scheduling policies that start activities
only at the end of other activities. Buss and Rosenblatt [7] partially remedy
this problem by starting an activity only after a fixed time interval (delay),
but do not decide which sets of activities to start at what time (all eligible
activities are started as soon as possible after their delay time).

The goal of this paper is to investigate the development of scheduling
policies for the described setting of stochastic durations and activity failures.
The work in this paper is an extension of De Reyck and Leus [9], who examine
uncertain activity outcomes but only allow for deterministic durations, and
also of Creemers et al. [8], who concentrate only on duration variability.

2 Definitions

A project consists of a set of activities (or tasks) N = {0, 1, . . . , n}, which
are to be processed without interruption. The duration Di of each activity
i is a random variable (r.v.); the vector (D0, D1, . . . , Dn) is denoted by D.
The set A is a strict order on N , i.e. an irreflexive and transitive relation,
which represents technological precedence constraints. The activities 0 and n
represent start and end of the project, respectively, and are the (unique) least
and greatest element of the partially ordered set (N,A). We use lowercase
vector d = (d0, d1, . . . , dn) to represent one particular realization (or sample,
or scenario) of D. For a given realization d, we can produce a schedule s,
i.e., a vector of starting times (s0, s1, . . . , sn) with si ≥ 0 for all i ∈ N . The
schedule s is feasible if si + di ≤ sj for all (i, j) ∈ A. In the remainder of
this paper, we assume the durations of the activities i ∈ N \ {0, n} to be
mutually independent exponentially distributed r.v.s with mean 1

µi
, µi > 0;

D0 = Dn = 0. In the literature, a PERT network with independent and ex-
ponentially distributed activity durations is often referred to as a Markovian
PERT network.

We focus on project scheduling with NPV (net present value) objective.
A cash flow ci is associated with each activity i ∈ N , which is a rational
number that is assumed to be negative in the context of this paper. Each cash
outflow is incurred at the start of the activity. Each activity i ∈ N \{n} also
has a probability of technical success (PTS) pi; we assume that p0 = 1 and
consider the outcomes of the different tasks to be independent. Information
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on activity success and duration becomes available only at the end of the
activity. Overall project success generates an end-of-project payoff C > 0,
which is received at the start of activity n. This final project payoff is only
achieved when all activities are successful, consequently the probability π of
project success equals

∏
i∈N\{n} pi. In order to account for the time value

of money, we define r to be the applicable continuous discount rate: the
present value of a cash flow c incurred at time t equals ce−rt. Without loss of
generality, we assume that C is large enough for the project to be undertaken
(otherwise all starting times may be set to infinity).

For Markovian PERT networks, Kulkarni and Adlakha [18] describe an
exact method for deriving the distribution and moments of the earliest project
completion time using continuous-time Markov chains (CTMCs). Both Tilson
et al. [22] and Buss and Rosenblatt [7] focus on the NPV objective and use
the CTMC described in [18] as a starting point for their algorithm. We
achieve a significant performance improvement compared to these existing
approaches, based on a judicious partitioning of the state space, and also
incorporate the concept of activity failures.

3 Problem statement

The execution of a project with stochastic durations can best be seen as a
dynamic decision process. A solution is a policy Π, which defines actions at
decision times. Decision times are typically t = 0 (the start of the project)
and the completion times of activities; a tentative next decision time can also
be specified by the decision maker. An action can entail the start of a set of
activities that is ‘feasible’, so that a feasible schedule is constructed gradually
through time. Next to the input data of the problem instance, a decision at
time t may only use information (on activity-duration realizations) that has
become available before or at time t; this requirement is often referred to as
the non-anticipativity constraint.

As soon as all activities are completed, the activity durations are known,
yielding a realization d of D. Consequently, every policy Π may alternatively
be interpreted [15] as a function Rn+1

≥ 7→ Rn+1
≥ that maps given samples d of

activity durations to vectors s(d; Π) of feasible activity starting times (sched-
ules). For a given scenario d and policy Π, sn(d; Π) denotes the makespan
of the schedule. The earlier-mentioned PERT problem aims at character-
izing the r.v. sn(D; ΠES), where policy ΠES starts all activities as early as
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task i cash flow ci mean duration E[Di] PTS pi
0 0 0 100%
1 −3 1 75%
2 −1 2 100%
3 −2 3 80%
4 −12 4 100%
5 −17 3 75%

Table 1: Project data for the example project.

possible. Contrary to e.g. the expected makespan, however, NPV is a non-
regular measure of performance: starting activities as early as possible is not
necessarily optimal.

In this text we investigate the determination of an optimal scheduling
policy for the expected-NPV objective. In the special case where the du-
rations have constant values d, the objective function corresponding with a
schedule s is the following:

max g(s,d) = πCe−rsn +
n−1∑
i=1

qi(s)cie
−rsi (1)

In this expression, qi(s) represents the probability that cash flow ci will be
incurred (so that activity i is paid for), for i ∈ N \ {n}. It can be seen that
qi(s) =

∏
k∈N :

sk+dk≤si
pk, the probability that all activities ending no later than

si succeed.
Our goal in this article is to select a policy Π∗ within a specific class that

minimizes E[g(s(D; Π),D)], with E[·] the expectation operator with respect
to D. The generality of this problem statement suggests that optimization
over the class of all policies will probably turn out to be computationally
intractable. We therefore restrict our optimization to a subclass that has a
simple combinatorial representation and where decision points are limited in
number: our solution space consists of all policies that start activities only
at the end of other activities (activity 0 is started at time 0).
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Figure 1: The precedence graph G(N, t(A)) for the example project. The
name of each node is represented below the node.

4 Illustration with known durations

We first illustrate the setting of activity success or failure by means of
a project with deterministic activity durations. We consider an example
project with n = 6, for which the input order A is described by Figure 1,
which shows the directed acyclic graph G(N, t(A)), where t(A) is the transi-
tive reduction1 of A (which is unique [2]). Further input data are provided in
Table 1; the project’s payoff value C is 80 and the discount rate r = 1% per
time unit. When all activity durations equal their expectation, the sched-
ule s1 shown in Figure 2 (with s0 = 0 and s6 = 9) is feasible and has an
objective-function value equal to

g(s1, E[D]) = c1e
−r + c2 + p1p2c3e

−2r + p1p2p3e
−5r(c4 + c5)

+ πCe−9r

= − 3e0.01 − 1− 1.5e−0.02 − 0.6e−0.05 × 29

+ 36e−0.09

= 10.90968.

An optimal schedule for the same example is s2 as shown in Figure 3, with
objective function g(s2, E[D]) = 12.194826.

1The transitive reduction of a binary relation E on a set N is the minimal relation E′

on N such that T (E′) = T (E); the transitive closure T (E) of a binary relation E on a set
N is the minimal transitive relation E′ on N that contains E.
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5 Stochastic durations

At any time instant t, each activity’s status is either idle (= unstarted),
active (= in the process of being executed) or finished ; we write Ωi(t) =
0, 1 or 2, respectively, for i ∈ N . The state of the system is defined by
the status of the individual activities and is represented by vector Ω(t) =
(Ω0(t),Ω1(t), . . . ,Ωn(t)). State transitions take place each time an activity
finishes and are determined by the policy at hand. The project’s starting and
finishing conditions are ∀i ∈ N : Ωi(0) = 0 and ∀i ∈ N : Ωi(t) = 2, ∀t ≥ ω,
respectively, where ω indicates the project completion time. The problem of
finding an optimal scheduling policy corresponds to optimizing a discounted
criterion in a continuous-time Markov decision chain (CTMDC) on the state
space Q, with Q containing all the states of the system that can be visited by
the transitions (which are called feasible states); the decision set is described
below. We apply a backward SDP recursion to determine optimal decisions,
in line with [22] and [8] and based on the CTMC as described in [18].

For ease of description, we adopt a different characterization of each state
v = (v0, v1, . . . , vn) ∈ Q: we let I(v), X(v) and L(v) represent the activities
in N that are idle, active and finished, respectively. There is a one-to-one
correspondence between (not necessarily feasible) state vectors v and mutu-
ally exclusive sets I, X and L with I ∪X ∪ L = N . The key instrument of
the SDP recursion is the value function G(·), which determines the expected
NPV of each feasible state at the time of entry of the state, conditional on
the hypothesis that optimal decisions are made in all subsequent states. In
the definition of the value function G(I,X), we supply sets I and X of idle
and active activities (which uniquely determines the finished activities).

We call an activity i eligible at time t if Ωi(t) = 0 and ∀(j, i) ∈ A :
Ωj(t) = 2; let E(v) = {i ∈ N |vi = 0 ∧ ∀(j, i) ∈ A : vj = 2}. At the

1

2 3

4

5

time0 1 2 3 4 5 6 7 8 9 10 11

Figure 2: A feasible schedule for the example project with mean durations.

8

http://www.stefancreemers.be
mailto:info@stefancreemers.be


m www.stefancreemers.be · B info@stefancreemers.be

entry of a state v ∈ Q, a decision needs to be made whether to start a set
of eligible activities (and if so, which), or not to start any activities; the
latter decision is possible only if X(v) 6= ∅. If no activities are started, a
transition towards another state takes place after the first completion of an
element of X(v). The probability that activity i ∈ X(v) finishes first among
the active activities equals µi/

∑
k∈X(v) µk. The expected time to the first

completion is
(∑

i∈X(v) µi

)−1

time units (the length of this timespan is also

exponentially distributed). The appropriate discount factor to be applied for

this timespan is
∑

k∈X(v) µk/
(
r +

∑
k∈X(v) µk

)
. The expected discounted

NPV to be obtained from the next state on condition that no new activities
are started, therefore equals∑

k∈X(v) µk

r +
∑

k∈X(v) µk

∑
i∈X(v)

piµi∑
k∈X(v) µk

G(I(v), X(v) \ {i}). (2)

The second alternative is to start a non-empty set of eligible activities S ⊆
E(v) when state v ∈ Q is entered. This leads to incurring a cost

∑
i∈S ci and

an immediate transition to another state, with no discounting required. The
corresponding immediate NPV (in expectation), conditional on set S 6= ∅
being started, is

G(I(v) \ S,X(v) ∪ S) +
∑
i∈S

ci. (3)

The total number of decisions S that can be made is 2|E(v)| if we include
S = ∅ according to Equation (2), otherwise it is one less. The decision cor-
responding with the highest value in (2) and (3) determines G(I(v), X(v)),
which completes our description of the SDP recursion. The optimal objective-
function value is maxΠ E[g(s(D; Π),D)] = G(N,∅).

1

2

3 45

time0 1 2 3 4 5 6 7 8 9 10 11

Figure 3: An optimal schedule for the example project with mean durations.
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An upper bound on |Q| is 3n. Enumerating all these 3n states is not
recommendable, because typically the majority of the states do not satisfy
the precedence constraints. Tilson et al. [22] develop a simple yet efficient
algorithm to produce a set of possible states; this set contains Q but may
be strictly larger. Additionally, to the best of our knowledge, all related
studies in the published literature reserve memory space to store the entire
state space of the CTMDC; Buss and Rosenblatt [7] point out that some
method of decomposition to reduce these memory requirements would allow
for considerable efficiency enhancements. We have implemented the tech-
niques proposed in the recent working paper [8] to considerably improve
upon the storage and computational requirements of earlier algorithms by
means of efficient creation of Q and decomposition of the network of state
transitions.

The SDP recursion starts in state (2, 2, . . . , 2, 0), so we omit states (2, 2, . . . , 1)
and (2, 2, . . . , 2). Subsequently, the value function is computed stepwise for
all other states. As the algorithm progresses, the information on the ear-
lier generated states will no longer be required for further computation and
therefore the memory occupied can be freed; this procedure is based on a
partition of Q, where the necessary subsets are generated and deleted when
appropriate.

6 Illustration (continued)

Reverting to the example presented in Section 4, we provide an illustration of
a project network with stochastic durations. All main characteristics of the
example project are preserved with the exception of the activity durations,
which are assumed to be exponentially distributed with means E[Di].

At the onset of the project (i.e. at state (2, 0, 0, 0, 0, 0, 0)) we can decide to
start the first activity, the second activity or to start both. The SDP recursion
evaluates the expected outcomes of each of these decisions and selects one
that yields the highest expected NPV (assuming optimal decisions are made
at all future decision moments). In our example, it is optimal to start only
the first activity (resulting in an objective function maxΠ E[g(s(D; Π),D)] =
12.093676) and we subsequently end up in state (2, 1, 0, 0, 0, 0, 0). The only
possible transition is then towards the state in which the first activity is
finished ((2, 2, 0, 0, 0, 0, 0)). At this point, three activities become eligible
and so 23 minus 1 (i.e., the decision not to start any activities) decisions
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Figure 4: Optimal paths in the decision tree for the example project with
stochastic durations.

are to be evaluated. The optimal decision is to start activities 2 and 3
(the resulting state is (2, 2, 1, 1, 0, 0, 0)). With two activities in progress,
two possibilities arise: either activity 2 or activity 3 has to finish first. In
both cases, however, it is optimal to wait for the other activity to finish
as well prior to starting any additional activities. As such, we end up in
state (2, 2, 2, 2, 0, 0, 0) with eligible activities 4 and 5, from where the optimal
decision is to start only activity 5. After the completion of activity 5, the
only decision left is to start activity 4, after whose completion we end up in
the final state (2, 2, 2, 2, 2, 2, 0) and collect the project payoff. The relevant
part of the corresponding decision tree is illustrated in Figure 4, in which the
project evolves from left to right. A ‘decision node’, represented by a square
�, indicates that a decision needs to be made at that point in the process;
a ‘chance node’ (also called ‘event node’), denoted by a circle ©, indicates
that a random event occurs at that point. At each of the decision nodes, we
indicate the expected NPV at the decision moment. For each decision node,
a double dash // is added to each branch that does not correspond with a
best choice in the associated SDP recursion.

We observe a clear similarity between the case with deterministic and the
one with stochastic durations. Not only are the objective function values very
close to each other, but we also see that the optimal scheduling policy for the
stochastic case will, the late-start character of activity 2 in Figure 3 left aside,
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re-produce the optimal schedule for the deterministic case when all stochastic
variables take on their mean values. This comes as no surprise when we take
into count the limited size of the example project and the fact that only
few activities can be executed in parallel (limiting the number of decisions
to be made). Results reported in Buss and Rosenblatt [7], on the other
hand, indicate that, for some scheduling instances, significant differences in
objective function values may be observed between the case with stochastic
and with deterministic durations. This will certainly hold for larger and
denser networks.

7 Performance

The SDP recursion developed in this article is an extension of the recursion
presented in Creemers et al. [8] for scheduling Markovian PERT networks
with maximum-NPV objective, which seems to be the current state of the
art. We have used RanGen [10] to create project network instances of varying
size (n) and order strength (OS), the latter being a measure for the density
of the network: OS is the proportion of precedence-related activity pairs
compared to the theoretically maximum number of such pairs. Preliminary
computational results indicate that for OS = 0.4, we are able to analyze
networks of up to 50 activities. With respect to OS = 0.6 and OS = 0.8,
instances with up to respectively 80 and 120 activities are successfully solved.
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