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Project scheduling: important 
concepts

What? Who? When? Why?

Activities Resources Schedule/Policy Makespan/NPV…
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2006 2018

Creemers (IESEG): new state-of-the-art
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• Markov and Markov-Regenerative PERT 
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three 
sets: idle, ongoing, & finished activities

For a project with n activities there are up to 
3n states!
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up in state q = {1,1,0,0,0,0}
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Here, it is optimal if activity 4 is 
ongoing activity 3 is preempted!
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On average, we improve computation 
times by a factor of 19!
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On average, we reduce memory requirements 
by a factor of 733!
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J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)

We are the first to solve instances of the 
J90 and J120 data sets to optimality!
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On average, we improve computation 
times by a factor of 492!
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On average, we reduce memory requirements 
by a factor of 403!
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n = 20 30 30 30

n = 30 30 30 30
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Instances solved (out of 30)

CPU times have become the new 
bottleneck
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time t

It is optimal not to preempt activity i
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Introduction

• We study the NPV of a project where:
– Activities have general duration distributions

– Cash flows are incurred during the lifetime of the project

• For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

• Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

• We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself
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NPV of a single cash flow obtained 
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑣𝑤 = 𝑐𝑤 
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)
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– 𝜇𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙𝑤 2𝑟 − 𝜙𝑤
2 𝑟 )

– 𝛾𝑤 = 𝑐𝑤
3 (𝜙𝑤 3𝑟 − 3𝜙𝑤 2𝑟 𝜙𝑤 𝑟 + 2𝜙𝑤

3 𝑟 ) 𝜎𝑤
−3

– 𝜃𝑤 = 𝑐𝑤
4 (𝜙𝑤 4𝑟 − 4𝜙𝑤 3𝑟 𝜙𝑤 𝑟 + 6𝜙𝑤 2𝑟 𝜙𝑤

2 𝑟 − 3𝜙𝑤
4 𝑟 ) 𝜎𝑤

−4

• The CDF & PDF of the NPV of 𝑐𝑤 are:

– 𝐺𝑤 𝑣 = 1 − 𝐹𝑤 ln
𝑐𝑤

𝑣
𝑟−1

– 𝑔𝑤 𝑣 =
𝑓𝑤 ln

𝑐𝑤
𝑣
𝑟−1

𝑟 𝑣
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NPV of a single cash flow obtained 
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤 
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
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2 𝑟 )

– …
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NPV of a single cash flow obtained 
after multiple stages

• The mean and variance of the distribution of time until 
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 =  𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 =  𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is 
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤
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𝑤 − 1

stage
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𝑓1(𝑡)
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𝑠1
2 𝑠…

2 𝑠𝑤
2
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NPV of a general project

• Different policies can be used to 
schedule the 3 stages:
– Serial

– Early Start (ES)

– Optimal

• If 𝑐3 is obtained after stages 1 & 2, 
then wat is discount factor?

=> Approximations may be required!

• How does 𝑣3 relate to the 𝑣1 & 𝑣2? 
What are the cross moments?

=> Approximations may be required!
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Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2. 
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3 

upon completion of 2.
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𝑟 = 0.1𝑝 = 200
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Early-Start policy

• When do we incur the payoff?

– After stage 1?

– After stage 2&3?

• What discount factor do we use?

– 𝜙1(𝑟)

– 𝜙2,3(𝑟)

• There no longer exists a fixed 
sequence/the sequence is 
probabilistic

Approximations are required!
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Optimal policy

• Payoff is obtained after stage 2 & 
after stages 1 & 3 that are executed in 
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the 
maximum duration of stages 1 & 3!

 We need to determine the discount 
factor for this maximum distribution

 If this is not possible, approximations 
are required!
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NPV of a general project

The example below illustrates the accuracy of the three-parameter
lognormal distribution (L3) for the ES and the optimal policy:
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• We obtain exact, closed-form expressions for the 
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can 
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found 
efficiently

• The eNPV of a general project can be obtained 
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of 
a general project can be approximated
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