
Some recent advances in project
scheduling

Stefan Creemers
(June 27, 2018)

INTRODUCTION

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Stefan who?

• PhD @ KU Leuven (2009)

• Visiting Professor @ KU
Leuven (rank 94)

• Full Professor @ IESEG
(rank 61)

• Board of Directors PICS
Belgium

• Associate Editor INFORMS
transactions on education

• Research interests: project
scheduling, logistics,
queueing theory…

Some example projects

• Construction of the Rhein-Hellweg-Express

• Development of the Ebola vaccine

• Organizing the FIFA World Cup

…

Some example projects

• Construction of the Rhein-Hellweg-Express

• Development of the Ebola vaccine

• Organizing the FIFA World Cup

…

Some example projects

• Construction of the Rhein-Hellweg-Express

• Development of the Ebola vaccine

• Organizing the FIFA World Cup

…

Some example projects

• Construction of the Rhein-Hellweg-Express

• Development of the Ebola vaccine

• Organizing the FIFA World Cup

…

Project scheduling: important
concepts

Project scheduling: important
concepts

What?

Project scheduling: important
concepts

What?

Activities

Project scheduling: important
concepts

What? Who?

Activities

Project scheduling: important
concepts

What? Who?

Activities Resources

Project scheduling: important
concepts

What? Who? When?

Activities Resources

Project scheduling: important
concepts

What? Who? When?

Activities Resources Schedule/Policy

Project scheduling: important
concepts

What? Who? When? Why?

Activities Resources Schedule/Policy

Project scheduling: important
concepts

What? Who? When? Why?

Activities Resources Schedule/Policy Makespan/NPV…

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

Project scheduling problems we’ll
consider today

• Minimize makespan:
– Deterministic activity durations:

• No preemption: RCPSP

• Preemption: PRCPSP

– Stochastic activity durations:
• No preemption: SRCPSP

• Preemption: PSRCPSP

• Maximize NPV
– Stochastic activity durations: SNPV

• All these problems are NP-hard!

RCPSP
(Resource-Constrained Project Scheduling Problem)

RCPSP
(Resource-Constrained Project Scheduling Problem)

S

1

3

2 E

RCPSP
(Resource-Constrained Project Scheduling Problem)

S

1

3

2 E

ACT DUR
RESOURCE

USE

1 2 1

2 2 1

3 2 1

Resource availability: 2

RCPSP
(Resource-Constrained Project Scheduling Problem)

S

1

3

2 E

ACT DUR
RESOURCE

USE

1 2 1

2 2 1

3 2 1

Resource availability: 2

1 2 3 4 Makespan0

1

2
Resource availability

1

2

3

PRCPSP
(Preemptive Resource-Constrained Project Scheduling Problem)

S

1

3

2 E

ACT DUR
RESOURCE

USE

1 2 1

2 2 1

3 2 1

Resource availability: 2

1 2 3 4 Makespan0

1

2
Resource availability

1

2

3

2

2
1 2 3 4 Makespan0

1

2
Resource availability

1

3

SRCPSP
(Stochastic Resource-Constrained Project Scheduling Problem)

SRCPSP
(Stochastic Resource-Constrained Project Scheduling Problem)

S
1

2 3
E

4

ACT DUR
RESOURCE

USE

1 4 1

2 {2,4} 1

3 2 2

4 2 1

Resource availability: 2

SRCPSP
(Stochastic Resource-Constrained Project Scheduling Problem)

S
1

2 3
E

4

ACT DUR
RESOURCE

USE

1 4 1

2 {2,4} 1

3 2 2

4 2 1

Resource availability: 2

1 2 3 4 5 6 7 80 Makespan

1

2
Resource availability

2

41
3

SRCPSP
(Stochastic Resource-Constrained Project Scheduling Problem)

2

1 2 3 4 5 6 7 80 Makespan

1

2
Resource availability

41
3

S
1

2 3
E

4

ACT DUR
RESOURCE

USE

1 4 1

2 {2,4} 1

3 2 2

4 2 1

Resource availability: 2

1 2 3 4 5 6 7 80 Makespan

1

2
Resource availability

2

41
3

PSRCPSP
(Preemptive Stochastic Resource-Constrained Project Scheduling Problem)

1 2 3 4 5 6 7 80 Makespan

1

2
Resource availability

1

2

4
3

1 2

1 2 3 4 5 6 7 80 Makespan

1

2
Resource availability

41
3

S
1

2 3
E

4

ACT DUR
RESOURCE

USE

1 4 1

2 {2,4} 1

3 2 2

4 2 1

Resource availability: 2

SNPV
(Stochastic expected NPV maximization problem)

SNPV
(Stochastic expected NPV maximization problem)

S
1

2

3
E

ACT DUR COST

1 4 0

2 {2,4} 0

3 1 -5

Discount rate: 10%

Project payoff: 10

SNPV
(Stochastic expected NPV maximization problem)

S
1

2

3
E

ACT DUR COST

1 4 0

2 {2,4} 0

3 1 -5

Discount rate: 10%

Project payoff: 10

1 2 3 4 50 Makespan

1

2

2 3

1

-5 10

NPV = 3.00

SNPV
(Stochastic expected NPV maximization problem)

S
1

2

3
E

ACT DUR COST

1 4 0

2 {2,4} 0

3 1 -5

Discount rate: 10%

Project payoff: 10

1 2 3 4 50 Makespan

1

2

2 3

1

-5 10

NPV = 3.00

2

1 2 3 4 50 Makespan

1

2

31

-5 10

NPV = 2.71

SNPV
(Stochastic expected NPV maximization problem)

S
1

2

3
E

ACT DUR COST

1 4 0

2 {2,4} 0

3 1 -5

Discount rate: 10%

Project payoff: 10

1 2 3 4 50 Makespan

1

2

2 3

1

-5 10

NPV = 3.00

2

1 2 3 4 50 Makespan

1

2

31

-5 10

NPV = 2.71

eNPV =
2.86

THE RCPSP

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: Facts & figures

• Google Scholar: 5370 hits

• Sciencedirect: 474 results

• Probably the most famous OR problem

• Solution heuristics implemented in software
(even in Microsoft Project!)

• NP-hard! Easy to understand, hard to solve!

• Still 48 open problems for J60 (a set of
benchmark problems)

The RCPSP: A brief (incomplete) timeline

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

1983

Blazewicz (Poznan): proof that RCPSP is NP complete

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

1983

Blazewicz (Poznan): proof that RCPSP is NP complete

Demeulemeester (KU Leuven): current state-of-the-art

1992
1998

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

1983

Blazewicz (Poznan): proof that RCPSP is NP complete

Demeulemeester (KU Leuven): current state-of-the-art

2000
1992
1998

Age of heuristics

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

1983

Blazewicz (Poznan): proof that RCPSP is NP complete

Demeulemeester (KU Leuven): current state-of-the-art

2000
1992
1998

Age of heuristics

Age of MILP solvers

2006

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

1983

Blazewicz (Poznan): proof that RCPSP is NP complete

Demeulemeester (KU Leuven): current state-of-the-art

2000
1992
1998

Age of heuristics

Age of MILP solvers

2006 2018

Creemers (IESEG): new state-of-the-art

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

The RCPSP: new approach

• Exact approach

• Work in progress

• Preliminary results:

– 17 times faster than current state-of-the-art

– Solutions to many unsolved benchmark problems

– We expect final results to be even better

MARKOVIAN PERT NETWORKS: A NEW CTMC

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

For a project with n activities there are up to
3n states!

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {1,1,1,1,1,1}

1

2

3

4

5

6

Example: State space

• An activity j is either:
– Idle (qj=0)
– Ongoing (qj=1)
– Finished (qj=2)

• The state of the system is
represented by a vector:

q = {q1, q2, … qn}
• Up to 3n = 729 states
• Example feasible state:
q = {2,1,1,0,0,0}
• Example Infeasible state:
q = {0,0,0,2,2,2}

1

2

3

4

5

6

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

New CTMC

• We are the first to introduce a new CTMC since the
CTMC of Kulkarni & Adlakha that was published in
1986

• In this new CTMC, states are defined by the set of
finished activities

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows
activities to be preempted

New CTMC

• We are the first to introduce a new CTMC since the
CTMC of Kulkarni & Adlakha that was published in
1986

• In this new CTMC, states are defined by the set of
finished activities

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows
activities to be preempted

New CTMC

• We are the first to introduce a new CTMC since the
CTMC of Kulkarni & Adlakha that was published in
1986

• In this new CTMC, states are defined by the set of
finished activities

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows
activities to be preempted

New CTMC

• We are the first to introduce a new CTMC since the
CTMC of Kulkarni & Adlakha that was published in
1986

• In this new CTMC, states are defined by the set of
finished activities

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows
activities to be preempted

New CTMC

• We are the first to introduce a new CTMC since the
CTMC of Kulkarni & Adlakha that was published in
1986

• In this new CTMC, states are defined by the set of
finished activities

up to 2n states (instead of 3n states)

Huge reduction in memory requirements (= THE
bottleneck for CTMC of Kulkarni & Adlakha)

• A potential “drawback” is that the new CTMC allows
activities to be preempted

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

3

Example: State space

• An activity j is either:

– Idle (qj=0)

– Finished (qj=1)

• Up to 2n = 64 states

• Example feasible state:

q = {1,0,0,0,0,0}

• What activities are
ongoing? 2? 3? 2 and 3?

• Preemption is possible

1

2 4

5

6

Example: State space

1

2

3

4

5

6

In this state, it is optimal if
activities 2 & 3 are ongoing

Example: State space

1

2

3

4

5

6 1

2

3

4

5

6

In this state, it is optimal if
activities 2 & 3 are ongoing

Activity 2 finishes we end
up in state q = {1,1,0,0,0,0}

Example: State space

1

2

3

4

5

6

Activity 2 finishes we end
up in state q = {1,1,0,0,0,0}

Example: State space

1

2

3

4

5

6

Activity 2 finishes we end
up in state q = {1,1,0,0,0,0}

1

2

3

4

5

6

Here, it is optimal if activity 4 is
ongoing activity 3 is preempted!

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Creemers (2015)

• Minimizing the expected makespan of a
project with stochastic activity durations
under resource constraints, Journal of
Scheduling, 2015

• Current state-of-the-art for solving the
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

well-known PSPLIB data sets (J30, J60,
J90, & J120)

• Bottleneck = memory requirements

Creemers (2015)

• Minimizing the expected makespan of a
project with stochastic activity durations
under resource constraints, Journal of
Scheduling, 2015

• Current state-of-the-art for solving the
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

well-known PSPLIB data sets (J30, J60,
J90, & J120)

• Bottleneck = memory requirements

Creemers (2015)

• Minimizing the expected makespan of a
project with stochastic activity durations
under resource constraints, Journal of
Scheduling, 2015

• Current state-of-the-art for solving the
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

well-known PSPLIB data sets (J30, J60,
J90, & J120)

• Bottleneck = memory requirements

Creemers (2015)

• Minimizing the expected makespan of a
project with stochastic activity durations
under resource constraints, Journal of
Scheduling, 2015

• Current state-of-the-art for solving the
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

well-known PSPLIB data sets (J30, J60,
J90, & J120)

• Bottleneck = memory requirements

Creemers (2015)

• Minimizing the expected makespan of a
project with stochastic activity durations
under resource constraints, Journal of
Scheduling, 2015

• Current state-of-the-art for solving the
SRCPSP

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

well-known PSPLIB data sets (J30, J60,
J90, & J120)

• Bottleneck = memory requirements

SRCPSP
2015 (JOS) Instances Solved

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) CPU Times

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) VS new CTMC

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 0.02

J60 81.6

J90 NA

J120 NA

NEW CTMC

Avg CPU time (s) for same inst.

SRCPSP
2015 (JOS) VS new CTMC

J30 0.48

J60 1591

J90 NA

J120 NA

OLD CTMC

Average CPU time (s)

J30 0.02

J60 81.6

J90 NA

J120 NA

NEW CTMC

Avg CPU time (s) for same inst.

On average, we improve computation
times by a factor of 19!

SRCPSP
2015 (JOS) Memory Requirements

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) Memory Requirements

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 480

J60 303

J90 NA

J120 NA

OLD CTMC

Instances solved (out of 480)

SRCPSP
2015 (JOS) VS new CTMC

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 1.99

J60 508

J90 NA

J120 NA

NEW CTMC

Avg max # states (x1K) for = inst.

SRCPSP
2015 (JOS) VS new CTMC

J30 176

J60 374499

J90 NA

J120 NA

OLD CTMC

Average max # states (x1000)

J30 1.99

J60 508

J90 NA

J120 NA

NEW CTMC

Avg max # states (x1K) for = inst.

On average, we reduce memory requirements
by a factor of 733!

SRCPSP
New CTMC Instances Solved

J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)

SRCPSP
New CTMC Instances Solved

J30 480

J60 480

J90 196

J120 10

NEW CTMC

Instances solved (out of 480)

We are the first to solve instances of the
J90 and J120 data sets to optimality!

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks
to maximize the net present value,
Operations Research Letters, 2010

• Current state-of-the-art for solving the
SNPV

• Uses CTMC of Kulkarni & Adlakha
• Computational performance tested on

dataset with different n and Order
Strength (OS)

• Bottleneck = memory requirements

SNPV
2010 (ORL) Instances Solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 7

n = 50 0 1 82

n = 60 0 6 NA

n = 70 0 34 NA

NEW CTMC

Average CPU time (s) for same instances

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

OLD CTMC

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 7

n = 50 0 1 82

n = 60 0 6 NA

n = 70 0 34 NA

NEW CTMC

Average CPU time (s) for same instances

On average, we improve computation
times by a factor of 492!

SNPV
2010 (ORL) Memory Requirements

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) Memory Requirements

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

Instances solved (out of 30)

OLD CTMC

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

NEW CTMC

Avg max # states (x1000) for same inst.

SNPV
2010 (ORL) VS new CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

OLD CTMC

Average max # states (x1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

NEW CTMC

Avg max # states (x1000) for same inst.

On average, we reduce memory requirements
by a factor of 403!

SNPV
New CTMC Instances Solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

SNPV
New CTMC CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

Average CPU time (s)

NEW CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

SNPV
New CTMC CPU Times

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

Average CPU time (s)

NEW CTMC

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW CTMC

Instances solved (out of 30)

CPU times have become the new
bottleneck

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

SNPV
To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start
that activity as early as possible

• If at time t activity i is preempted, the remainder
of activity i joins the set of eligible activities

• The remainder of activity i has a zero cost (the
cost has already been incurred at the start of
activity i)

It is optimal to start the remainder of activity i at
time t

It is optimal not to preempt activity i

Agenda

• CTMC of Kulkarni and Adlakha (1986)
• New CTMC
• Comparison of performance for the SRCPSP:

– CPU times
– Memory requirements
– New state-of-the-art results

• Comparison of performance for the SNPV:
– CPU times
– Memory requirements
– New state-of-the-art results

• Conclusion

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

Conclusion

• New CTMC that only keeps track of finished activities
• Significantly reduces memory requirements when

compared with CTMC of Kulkarni & Adlakha
• New state-of-the-art for solving the SRCPSP and the

SNPV
• Bottleneck shifted from memory requirements to CPU

times
• Only “drawback” is that the new CTMC allows activities

to be preempted
• We prove that there is no preemption when solving the

SNPV

MOMENTS & DISTRIBUTION OF PROJECT NPV

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

Introduction

• We study the NPV of a project where:
– Activities have general duration distributions

– Cash flows are incurred during the lifetime of the project

• For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

• Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

• We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself

Introduction

• We study the NPV of a project where:
– Activities have general duration distributions

– Cash flows are incurred during the lifetime of the project

• For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

• Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

• We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself

Introduction

• We study the NPV of a project where:
– Activities have general duration distributions

– Cash flows are incurred during the lifetime of the project

• For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

• Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

• We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself

Introduction

• We study the NPV of a project where:
– Activities have general duration distributions

– Cash flows are incurred during the lifetime of the project

• For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

• Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

• We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself

Introduction

• We study the NPV of a project where:
– Activities have general duration distributions

– Cash flows are incurred during the lifetime of the project

• For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

• Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

• We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
w

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
w

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
w

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
w

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
w

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

• 𝑐𝑤 = cash flow incurred at start of stage 𝑤
• 𝑣𝑤 = NPV of cash flow 𝑐𝑤
• 𝑓𝑤(𝑡) = distribution of time until cash flow 𝑐𝑤 is incurred
• 𝑟 = discount rate

• 𝑀𝑓𝑤 𝑡 (−𝑟) = moment generating function of 𝑓𝑤(𝑡) about −𝑟

• 𝜙𝑤(𝑟) = discount factor for stage 𝑤

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
w

𝑣𝑤 = 𝑐𝑤
0

∞

𝑓𝑤 𝑡 𝑒
−𝑟𝑡 𝑑𝑡 𝑣𝑤 = 𝑐𝑤𝑀𝑓𝑤(𝑡)(−𝑟) 𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

NPV of a single cash flow obtained
after a single stage

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

stage
w

• Using discount factor 𝜙𝑤(𝑟), we can obtain the moments of the NPV:

– 𝜇𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙𝑤 2𝑟 − 𝜙𝑤
2 𝑟)

– 𝛾𝑤 = 𝑐𝑤
3 (𝜙𝑤 3𝑟 − 3𝜙𝑤 2𝑟 𝜙𝑤 𝑟 + 2𝜙𝑤

3 𝑟) 𝜎𝑤
−3

– 𝜃𝑤 = 𝑐𝑤
4 (𝜙𝑤 4𝑟 − 4𝜙𝑤 3𝑟 𝜙𝑤 𝑟 + 6𝜙𝑤 2𝑟 𝜙𝑤

2 𝑟 − 3𝜙𝑤
4 𝑟) 𝜎𝑤

−4

• The CDF & PDF of the NPV of 𝑐𝑤 are:

– 𝐺𝑤 𝑣 = 1 − 𝐹𝑤 ln
𝑐𝑤

𝑣
𝑟−1

– 𝑔𝑤 𝑣 =
𝑓𝑤 ln

𝑐𝑤
𝑣
𝑟−1

𝑟 𝑣

NPV of a single cash flow obtained
after a single stage

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

stage
w

• Using discount factor 𝜙𝑤(𝑟), we can obtain the moments of the NPV:

– 𝜇𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙𝑤 2𝑟 − 𝜙𝑤
2 𝑟)

– 𝛾𝑤 = 𝑐𝑤
3 (𝜙𝑤 3𝑟 − 3𝜙𝑤 2𝑟 𝜙𝑤 𝑟 + 2𝜙𝑤

3 𝑟) 𝜎𝑤
−3

– 𝜃𝑤 = 𝑐𝑤
4 (𝜙𝑤 4𝑟 − 4𝜙𝑤 3𝑟 𝜙𝑤 𝑟 + 6𝜙𝑤 2𝑟 𝜙𝑤

2 𝑟 − 3𝜙𝑤
4 𝑟) 𝜎𝑤

−4

• The CDF & PDF of the NPV of 𝑐𝑤 are:

– 𝐺𝑤 𝑣 = 1 − 𝐹𝑤 ln
𝑐𝑤

𝑣
𝑟−1

– 𝑔𝑤 𝑣 =
𝑓𝑤 ln

𝑐𝑤
𝑣
𝑟−1

𝑟 𝑣

NPV of a single cash flow obtained
after a single stage

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

stage
w

• Using discount factor 𝜙𝑤(𝑟), we can obtain the moments of the NPV:

– 𝜇𝑤 = 𝑐𝑤𝜙𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙𝑤 2𝑟 − 𝜙𝑤
2 𝑟)

– 𝛾𝑤 = 𝑐𝑤
3 (𝜙𝑤 3𝑟 − 3𝜙𝑤 2𝑟 𝜙𝑤 𝑟 + 2𝜙𝑤

3 𝑟) 𝜎𝑤
−3

– 𝜃𝑤 = 𝑐𝑤
4 (𝜙𝑤 4𝑟 − 4𝜙𝑤 3𝑟 𝜙𝑤 𝑟 + 6𝜙𝑤 2𝑟 𝜙𝑤

2 𝑟 − 3𝜙𝑤
4 𝑟) 𝜎𝑤

−4

• The CDF & PDF of the NPV of 𝑐𝑤 are:

– 𝐺𝑤 𝑣 = 1 − 𝐹𝑤 ln
𝑐𝑤

𝑣
𝑟−1

– 𝑔𝑤 𝑣 =
𝑓𝑤 ln

𝑐𝑤
𝑣
𝑟−1

𝑟 𝑣

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

𝑣𝑤 = 𝑐𝑤𝜙1(𝑟)…𝜙𝑤 (𝑟) 𝑣𝑤 = 𝑐𝑤
𝑖=1

𝑤

𝜙𝑖(𝑟) 𝑣𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

𝑐𝑤

𝑓𝑤(𝑡)
now

𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝜙1(𝑟) 𝜙𝑤(𝑟)𝜙…(𝑟)

• We can obtain the moments of the NPV of cash flow 𝑐𝑤:

– 𝜇𝑤 = 𝑐𝑤𝜙1,𝑤(𝑟)

– 𝜎𝑤
2 = 𝑐𝑤

2 (𝜙1,𝑤 2𝑟 − 𝜙1,𝑤
2 𝑟)

– …

NPV of a single cash flow obtained
after multiple stages

• The mean and variance of the distribution of time until
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 = 𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 = 𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝑑1 𝑑𝑤𝑑…

𝑠1
2 𝑠…

2 𝑠𝑤
2

NPV of a single cash flow obtained
after multiple stages

• The mean and variance of the distribution of time until
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 = 𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 = 𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝑑1 𝑑𝑤𝑑…

𝑠1
2 𝑠…

2 𝑠𝑤
2

NPV of a single cash flow obtained
after multiple stages

• The mean and variance of the distribution of time until
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 = 𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 = 𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝑑1 𝑑𝑤𝑑…

𝑠1
2 𝑠…

2 𝑠𝑤
2

NPV of a single cash flow obtained
after multiple stages

• The mean and variance of the distribution of time until
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 = 𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 = 𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝑑1 𝑑𝑤𝑑…

𝑠1
2 𝑠…

2 𝑠𝑤
2

NPV of a single cash flow obtained
after multiple stages

• The mean and variance of the distribution of time until
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 = 𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 = 𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝑑1 𝑑𝑤𝑑…

𝑠1
2 𝑠…

2 𝑠𝑤
2

NPV of a single cash flow obtained
after multiple stages

• The mean and variance of the distribution of time until
cash flow 𝑐𝑤 is incurred is:

– 𝑑1,𝑤 = 𝑖=1
𝑤 𝑑𝑖

– 𝑠1,𝑤
2 = 𝑖=1

𝑤 𝑠𝑖
2

• If stage 𝑤 is preceded by a sufficient number of stages, 𝑓1,𝑤(𝑡)
is normally distributed with mean 𝑑1,𝑤 and variance 𝑠1,𝑤

2

• If 𝑓1,𝑤(𝑡) is normally distributed, the NPV of cash flow 𝑐𝑤 is
lognormally distributed!

𝑐𝑤

𝑓𝑤(𝑡) stage
𝑤

stage
𝑤 − 1

stage
1

𝑓1(𝑡)

𝑑1 𝑑𝑤𝑑…

𝑠1
2 𝑠…

2 𝑠𝑤
2

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

NPV of a serial project

𝑣 = 𝑣1+…+𝑣𝑤−1+𝑣𝑤

NPV of a serial project

𝑣1

stage
1

𝑐1

𝑣 = 𝑣1+…+𝑣𝑤−1+𝑣𝑤

NPV of a serial project

𝑣1

stage
1

𝑐1

𝑣𝑤−1

stage
𝑤 − 1

stage
1

𝑐𝑤−1

𝑣 = 𝑣1+…+𝑣𝑤−1+𝑣𝑤

NPV of a serial project

𝑐𝑤
𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑣1

stage
1

𝑐1

𝑣𝑤−1

stage
𝑤 − 1

stage
1

𝑐𝑤−1

𝑣 = 𝑣1+…+𝑣𝑤−1+𝑣𝑤

NPV of a serial project

𝑐𝑤
𝑣𝑤

stage
𝑤

stage
𝑤 − 1

stage
1

𝑣1

stage
1

𝑐1

𝑣𝑤−1

stage
𝑤 − 1

stage
1

𝑐𝑤−1

𝑣 = 𝑣1+…+𝑣𝑤−1+𝑣𝑤

NPV of a serial project

We can obtain the moments of the NPV of the serial
project using exact, closed-form formula’s:

NPV of a serial project

We can obtain the moments of the NPV of the serial
project using exact, closed-form formula’s:

NPV of a serial project

We develop a three-parameter lognormal distribution
that can be used to match the mean, variance, and
skewness of the true NPV distribution

The example below illustrates the accuracy of the three-
parameter lognormal distribution (L3):

NPV of a serial project

We develop a three-parameter lognormal distribution
that can be used to match the mean, variance, and
skewness of the true NPV distribution

The example below illustrates the accuracy of the three-
parameter lognormal distribution (L3):

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

Optimal sequence of stages

𝑣

• Moments of known sequence can be obtained using
exact closed-form formulas

• How to obtain the optimal sequence of a set of
stages that are potentially precedence related?

Optimal sequence of stages

𝑣

• Moments of known sequence can be obtained using
exact closed-form formulas

• How to obtain the optimal sequence of a set of
stages that are potentially precedence related?

𝑣∗
???

Optimal sequence of stages

𝑣∗
???

• The problem to find the optimal sequence of stages
is equivalent to the Least Cost Fault Detection
Problem (LCFDP)

• The LCFDP minimizes the cost of the sequential
diagnosis of a number of system components

• In the absence of precedence relations, the optimal
sequence can be found in polynomial time

• Efficient algorithms are available for the general case

Optimal sequence of stages

𝑣∗
???

• The problem to find the optimal sequence of stages
is equivalent to the Least Cost Fault Detection
Problem (LCFDP)

• The LCFDP minimizes the cost of the sequential
diagnosis of a number of system components

• In the absence of precedence relations, the optimal
sequence can be found in polynomial time

• Efficient algorithms are available for the general case

Optimal sequence of stages

𝑣∗
???

• The problem to find the optimal sequence of stages
is equivalent to the Least Cost Fault Detection
Problem (LCFDP)

• The LCFDP minimizes the cost of the sequential
diagnosis of a number of system components

• In the absence of precedence relations, the optimal
sequence can be found in polynomial time

• Efficient algorithms are available for the general case

Optimal sequence of stages

𝑣∗
???

• The problem to find the optimal sequence of stages
is equivalent to the Least Cost Fault Detection
Problem (LCFDP)

• The LCFDP minimizes the cost of the sequential
diagnosis of a number of system components

• In the absence of precedence relations, the optimal
sequence can be found in polynomial time

• Efficient algorithms are available for the general case

Optimal sequence of stages

𝑣∗
???

• The problem to find the optimal sequence of stages
is equivalent to the Least Cost Fault Detection
Problem (LCFDP)

• The LCFDP minimizes the cost of the sequential
diagnosis of a number of system components

• In the absence of precedence relations, the optimal
sequence can be found in polynomial time

• Efficient algorithms are available for the general case

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

NPV of a general project

• Different policies can be used to
schedule the 3 stages:
– Serial

– Early Start (ES)

– Optimal

• If 𝑐3 is obtained after stages 1 & 2,
then wat is discount factor?

=> Approximations may be required!

• How does 𝑣3 relate to the 𝑣1 & 𝑣2?
What are the cross moments?

=> Approximations may be required!

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Scheduling policies

• Serial policies:
– 1-2-3
– 1-3-2
– 2-1-3
– 2-3-1
– 3-1-2
– 3-2-1

• Early-Start (ES) policy: Start 1 & 2.
Start 3 upon completion of 2.

...
• Optimal policy: Start 2. Start 1 & 3

upon completion of 2.

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Early-Start policy

• When do we incur the payoff?

– After stage 1?

– After stage 2&3?

• What discount factor do we use?

– 𝜙1(𝑟)

– 𝜙2,3(𝑟)

• There no longer exists a fixed
sequence/the sequence is
probabilistic

Approximations are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Early-Start policy

• When do we incur the payoff?

– After stage 1?

– After stage 2&3?

• What discount factor do we use?

– 𝜙1(𝑟)

– 𝜙2,3(𝑟)

• There no longer exists a fixed
sequence/the sequence is
probabilistic

Approximations are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Early-Start policy

• When do we incur the payoff?

– After stage 1?

– After stage 2&3?

• What discount factor do we use?

– 𝜙1(𝑟)

– 𝜙2,3(𝑟)

• There no longer exists a fixed
sequence/the sequence is
probabilistic

Approximations are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Early-Start policy

• When do we incur the payoff?

– After stage 1?

– After stage 2&3?

• What discount factor do we use?

– 𝜙1(𝑟)

– 𝜙2,3(𝑟)

• There no longer exists a fixed
sequence/the sequence is
probabilistic

Approximations are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Early-Start policy

• When do we incur the payoff?

– After stage 1?

– After stage 2&3?

• What discount factor do we use?

– 𝜙1(𝑟)

– 𝜙2,3(𝑟)

• There no longer exists a fixed
sequence/the sequence is
probabilistic

Approximations are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Optimal policy

• Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the
maximum duration of stages 1 & 3!

 We need to determine the discount
factor for this maximum distribution

 If this is not possible, approximations
are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Optimal policy

• Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the
maximum duration of stages 1 & 3!

 We need to determine the discount
factor for this maximum distribution

 If this is not possible, approximations
are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Optimal policy

• Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the
maximum duration of stages 1 & 3!

 We need to determine the discount
factor for this maximum distribution

 If this is not possible, approximations
are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Optimal policy

• Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the
maximum duration of stages 1 & 3!

 We need to determine the discount
factor for this maximum distribution

 If this is not possible, approximations
are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Optimal policy

• Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the
maximum duration of stages 1 & 3!

 We need to determine the discount
factor for this maximum distribution

 If this is not possible, approximations
are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project
Optimal policy

• Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
parallel

• What discount factor do we use?
– 𝜙2(𝑟) 𝜙1(𝑟)

– 𝜙2(𝑟) 𝜙3(𝑟)

• The payoff is obtained after the
maximum duration of stages 1 & 3!

 We need to determine the discount
factor for this maximum distribution

 If this is not possible, approximations
are required!

stage
1

stage
2

stage
3

𝑐3=-10

𝑐1=-50

𝑐2=-20

𝑓1(𝑡)~𝐸𝑥𝑝(1)

𝑓2,3(𝑡)~𝐸𝑥𝑝(0.5)

𝑟 = 0.1𝑝 = 200

NPV of a general project

The example below illustrates the accuracy of the three-parameter
lognormal distribution (L3) for the ES and the optimal policy:

Agenda

• Introduction

• Serial projects:

– Single cash flow after a single stage

– Single cash flow after multiple stages

– NPV of a serial project

– Optimal sequence of stages

• General projects

• Conclusions

Conclusion

• We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found
efficiently

• The eNPV of a general project can be obtained
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of
a general project can be approximated

Conclusion

• We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found
efficiently

• The eNPV of a general project can be obtained
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of
a general project can be approximated

Conclusion

• We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found
efficiently

• The eNPV of a general project can be obtained
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of
a general project can be approximated

Conclusion

• We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found
efficiently

• The eNPV of a general project can be obtained
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of
a general project can be approximated

Conclusion

• We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found
efficiently

• The eNPV of a general project can be obtained
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of
a general project can be approximated

Conclusion

• We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

• The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

• The optimal sequence of stages can be found
efficiently

• The eNPV of a general project can be obtained
using exact, closed-form expressions

• Higher moments & the distribution of the NPV of
a general project can be approximated

TIME FOR QUESTIONS?

