Some recent advances in project scheduling

Stefan Creemers
(June 27, 2018)

KATHOLIEKE UNIVERSITEIT
LEUVEN

INTRODUCTION

Stefan who?

- PhD @ KU Leuven (2009)

KULEUVEN

Stefan who?

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU Leuven (FT rank 94)

KULEUVEN

Stefan who?

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU Leuven (FT rank 94)
- Full Professor @ IESEG (FT rank 61)

KU LEUVEN

Stefan who?

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU Leuven (FT rank 94)
- Full Professor @ IESEG (FT rank 61)
- Board of Directors PICS Belgium

KU LEUVEN

Stefan who?

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU Leuven (FT rank 94)
- Full Professor @ IESEG (FT rank 61)
- Board of Directors PICS Belgium
- Associate Editor INFORMS transactions on education

KU LEUVEN

informs

Stefan who?

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU Leuven (FT rank 94)
- Full Professor @ IESEG (FT rank 61)
- Board of Directors PICS Belgium
- Associate Editor INFORMS transactions on education
- Research interests: project scheduling, logistics, queueing theory...

KU LEUVEN

PICS BELGIUM

informs

Stefan who?

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU Leuven (FT rank 94)

KULEUVEN

- Full Professor @ IESEG (FT rank 61)
- Board of Directors PICS Belgium
- Associate Editor INFORIMS transactions on education

- Research interests: project scheduling logistics, queueing theory...

Some example projects

Some example projects

- Construction of the Rhein-Hellweg-Express

Some example projects

- Construction of the Rhein-Hellweg-Express
- Development of the Ebola vaccine

Some example projects

- Construction of the Rhein-Hellweg-Express
- Development of the Ebola vaccine
- Organizing the FIFA World Cup

Project scheduling: important concepts

Project scheduling: important concepts

What?

Project scheduling: important concepts

What?

Activities

Project scheduling: important concepts

Activities

Project scheduling: important concepts

What? Who?

Activities Resources

Project scheduling: important concepts

Who?

Activities Resources

Project scheduling: important concepts

 Who?

Resources

When?

Schedule/Policy

Project scheduling: important concepts

Activities

When?
Why?

Schedule/Policy

Project scheduling: important concepts

Activities
Resources

Schedule/Policy
Makespan/NPV...

Project scheduling problems we'll consider today

Project scheduling problems we'll consider today

- Minimize makespan:

Project scheduling problems we'll consider today

- Minimize makespan:
- Deterministic activity durations:

Project scheduling problems we'll consider today

- Minimize makespan:
- Deterministic activity durations:
- No preemption: RCPSP

Project scheduling problems we'll consider today

- Minimize makespan:
- Deterministic activity durations:
- No preemption: RCPSP
- Preemption: PRCPSP

Project scheduling problems we'll consider today

- Minimize makespan:
- Deterministic activity durations:
- No preemption: RCPSP
- Preemption: PRCPSP
- Stochastic activity durations:
- No preemption: SRCPSP
- Preemption: PSRCPSP

Project scheduling problems we'll consider today

- Minimize makespan:
- Deterministic activity durations:
- No preemption: RCPSP
- Preemption: PRCPSP
- Stochastic activity durations:
- No preemption: SRCPSP
- Preemption: PSRCPSP
- Maximize NPV
- Stochastic activity durations: SNPV

Project scheduling problems we'll consider today

- Minimize makespan:
- Deterministic activity durations:
- No preemption: RCPSP
- Preemption: PRCPSP
- Stochastic activity durations:
- No preemption: SRCPSP
- Preemption: PSRCPSP
- Maximize NPV
- Stochastic activity durations: SNPV
- All these problems are NP-hard!

RCPSP

(Resource-Constrained Project Scheduling Problem)

RCPSP

(Resource-Constrained Project Scheduling Problem)

RCPSP

(Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	2	1
2	2	1
3	2	1

RCPSP

(Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	2	1
2	2	1
3	2	1

PRCPSP

(Preemptive Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	2	1
2	2	1
3	2	1

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	4	1
2	$\{2,4\}$	1
3	2	2
4	2	1
Resource availability: 2		

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	4	1
2	$\{2,4\}$	1
3	2	2
4	2	1

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	4	1
2	$\{2,4\}$	1
3	2	2
4	2	1
Resource availability: 2		

PSRCPSP

(Preemptive Stochastic Resource-Constrained Project Scheduling Problem)

SNPV

(Stochastic expected NPV maximization problem)

SNPV

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	$\{2,4\}$	0
3	1	-5

Discount rate: 10%
Project payoff: 10

SNPV

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	$\{2,4\}$	0
3	1	-5

Discount rate: 10%
Project payoff: 10

SNPV

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	$\{2,4\}$	0
3	1	-5

Discount rate: 10%
Project payoff: 10

SNPV

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	$\{2,4\}$	0
3	1	-5

Discount rate: 10%
Project payoff: 10

THE RCPSP

The RCPSP: Facts \& figures

The RCPSP: Facts \& figures

- Google Scholar: 5370 hits

The RCPSP: Facts \& figures

- Google Scholar: 5370 hits
- Sciencedirect: 474 results

The RCPSP: Facts \& figures

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem

The RCPSP: Facts \& figures

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem
- Solution heuristics implemented in software (even in Microsoft Project!)

The RCPSP: Facts \& figures

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem
- Solution heuristics implemented in software (even in Microsoft Project!)
- NP-hard! Easy to understand, hard to solve!

The RCPSP: Facts \& figures

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem
- Solution heuristics implemented in software (even in Microsoft Project!)
- NP-hard! Easy to understand, hard to solve!
- Still 48 open problems for J60 (a set of benchmark problems)

The RCPSP: A brief (incomplete) timeline

The RCPSP: A brief (incomplete) timeline

1959

Bowman (MIT): first optimal solution

The RCPSP: A brief (incomplete) timeline

19591983

Blazewicz (Poznan): proof that RCPSP is NP complete
Bowman (MIT): first optimal solution

The RCPSP: A brief (incomplete) timeline

The RCPSP: new approach

The RCPSP: new approach

- Exact approach

The RCPSP: new approach

- Exact approach
- Work in progress

The RCPSP: new approach

- Exact approach
- Work in progress
- Preliminary results:

The RCPSP: new approach

- Exact approach
- Work in progress
- Preliminary results:
- 17 times faster than current state-of-the-art

The RCPSP: new approach

- Exact approach
- Work in progress
- Preliminary results:
- 17 times faster than current state-of-the-art
- Solutions to many unsolved benchmark problems

The RCPSP: new approach

- Exact approach
- Work in progress
- Preliminary results:
- 17 times faster than current state-of-the-art
- Solutions to many unsolved benchmark problems
- We expect final results to be even better

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
- CPU times
- Memory requirements
- New state-of-the-art results
- Comparison of performance for the SNPV:
- CPU times
- Memory requirements
- New state-of-the-art results
- Conclusion

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
- CPU times
- Memory requirements
- New state-of-the-art results
- Comparison of performance for the SNPV:
- CPU times
- Memory requirements
- New state-of-the-art results
- Conclusion

Kulkarni \& Adlakha (1986)

Kulkarni \& Adlakha (1986)

- Markov and Markov-Regenerative PERT Networks, Operations Research, 1986

Kulkarni \& Adlakha (1986)

- Markov and Markov-Regenerative PERT Networks, Operations Research, 1986
- 208 citations

Kulkarni \& Adlakha (1986)

- Markov and Markov-Regenerative PERT Networks, Operations Research, 1986
- 208 citations
- First to study Markovian PERT networks

Kulkarni \& Adlakha (1986)

- Markov and Markov-Regenerative PERT Networks, Operations Research, 1986
- 208 citations
- First to study Markovian PERT networks
- Use of a CTMC to model a network

Kulkarni \& Adlakha (1986)

- Markov and Markov-Regenerative PERT Networks, Operations Research, 1986
- 208 citations
- First to study Markovian PERT networks
- Use of a CTMC to model a network
- The states of the CTMC are defined by three sets: idle, ongoing, \& finished activities

Kulkarni \& Adlakha (1986)

- Markov and Markov-Regenerative PERT Networks, Operations Research, 1986
- 208 citations
- First to study Markovian PERT networks
- Use of a CTMC to model a network
- The states of the CTMC are defined by three sets: idle, ongoing, \& finished activities
\Rightarrow For a project with n activities there are up to 3^{n} states!

Example: State space

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Ongoing ($\theta_{j}=1$)

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Ongoing ($\theta_{j}=1$)
- Finished ($\theta_{j}=2$)

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Ongoing ($\theta_{j}=1$)
- Finished ($\theta_{j}=2$)
- The state of the system is represented by a vector:
$\theta=\left\{\theta_{1}, \theta_{2}, \ldots \theta_{n}\right\}$

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Ongoing ($\theta_{j}=1$)
- Finished ($\theta_{j}=2$)
- The state of the system is represented by a vector:
$\theta=\left\{\theta_{1}, \theta_{2}, \ldots \theta_{n}\right\}$
- Up to $3^{n}=729$ states

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Ongoing ($\theta_{j}=1$)
- Finished ($\theta_{j}=2$)
- The state of the system is represented by a vector:
$\theta=\left\{\theta_{1}, \theta_{2}, \ldots \theta_{n}\right\}$
- Up to $3^{n}=729$ states
- Example feasible state:
$\theta=\{2,1,1,0,0,0\}$

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Ongoing ($\theta_{j}=1$)
- Finished ($\theta_{j}=2$)
- The state of the system is represented by a vector:
$\theta=\left\{\theta_{1}, \theta_{2}, \ldots \theta_{n}\right\}$
- Up to $3^{n}=729$ states
- Example feasible state:
$\theta=\{2,1,1,0,0,0\}$
- Example Infeasible state:
$\theta=\{0,0,0,2,2,2\}$

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
- CPU times
- Memory requirements
- New state-of-the-art results
- Comparison of performance for the SNPV:
- CPU times
- Memory requirements
- New state-of-the-art results
- Conclusion

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni \& Adlakha that was published in 1986

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni \& Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni \& Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities
\Rightarrow up to 2^{n} states (instead of 3^{n} states)

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni \& Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities
\Rightarrow up to 2^{n} states (instead of 3^{n} states)
\Rightarrow Huge reduction in memory requirements (= THE bottleneck for CTMC of Kulkarni \& Adlakha)

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni \& Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities
\Rightarrow up to 2^{n} states (instead of 3^{n} states)
\Rightarrow Huge reduction in memory requirements (= THE bottleneck for CTMC of Kulkarni \& Adlakha)
- A potential "drawback" is that the new CTMC allows activities to be preempted

Example: State space

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)

Example: State space

- An activity j is either:

- Idle ($\theta_{j}=0$)
- Finished $\left(\theta_{j}=1\right)$

Example: State space

- An activity j is either:

- Idle ($\theta_{j}=0$)
- Finished ($\theta_{j}=1$)
- Up to $2^{n}=64$ states

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Finished ($\theta_{j}=1$)
- Up to $2^{n}=64$ states
- Example feasible state:
$\theta=\{1,0,0,0,0,0\}$

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Finished ($\theta_{j}=1$)
- Up to $2^{n}=64$ states
- Example feasible state:
$\theta=\{1,0,0,0,0,0\}$
- What activities are ongoing? 2? 3? 2 and 3?

Example: State space

- An activity j is either:
- Idle ($\theta_{j}=0$)
- Finished ($\theta_{j}=1$)
- Up to $2^{n}=64$ states
- Example feasible state:
$\theta=\{1,0,0,0,0,0\}$
- What activities are ongoing? 2? 3? 2 and 3?
- Preemption is possible

Example: State space

In this state, it is optimal if activities $2 \& 3$ are ongoing

Example: State space

In this state, it is optimal if activities $2 \& 3$ are ongoing

Activity 2 finishes \rightarrow we end up in state $\theta=\{1,1,0,0,0,0\}$

Example: State space

Activity 2 finishes \rightarrow we end up in state $\theta=\{1,1,0,0,0,0\}$

Example: State space

Here, it is optimal if activity 4 is
Activity 2 finishes \rightarrow we end up in state $\theta=\{1,1,0,0,0,0\}$

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
- CPU times
- Memory requirements
- New state-of-the-art results
- Comparison of performance for the SNPV:
- CPU times
- Memory requirements
- New state-of-the-art results
- Conclusion

Creemers (2015)

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, Journal of Scheduling, 2015

Creemers (2015)

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, Journal of Scheduling, 2015
- Current state-of-the-art for solving the SRCPSP

Creemers (2015)

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, Journal of Scheduling, 2015
- Current state-of-the-art for solving the SRCPSP
- Uses CTMC of Kulkarni \& Adlakha

Creemers (2015)

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, Journal of Scheduling, 2015
- Current state-of-the-art for solving the SRCPSP
- Uses CTMC of Kulkarni \& Adlakha
- Computational performance tested on well-known PSPLIB data sets (J30, J60, J90, \& J120)

Creemers (2015)

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, Journal of Scheduling, 2015
- Current state-of-the-art for solving the SRCPSP
- Uses CTMC of Kulkarni \& Adlakha
- Computational performance tested on well-known PSPLIB data sets (J30, J60, J90, \& J120)
- Bottleneck = memory requirements

SRCPSP

2015 (JOS) Instances Solved

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

SRCPSP

2015 (JOS) CPU Times

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

OLD CTMC	
Average CPU time (s)	
J 30	0.48
J 60	1591
J 90	NA
J 120	NA

SRCPSP

2015 (JOS) VS new CTMC

NEW CTMC	
Avg CPU time (s) for same inst.	
J 30	0.02
J 60	81.6
J 90	NA
J 120	NA

OLD CTMC	
Average CPU time (s)	
J 30	0.48
J 60	1591
J 90	NA
J 120	NA

SRCPSP

2015 (JOS) VS new CTMC

NEW CTMC	
Avg CPU time (s) for same inst.	
J 30	0.02
J 60	81.6
J 90	NA
J 120	NA

OLD CTMC	
Average CPU time (s)	
J 30	0.48
J 60	1591
J 90	NA
J 120	NA

On average, we improve computation times by a factor of 19!

SRCPSP

2015 (JOS) Memory Requirements

OLD CTMC	
Instances solved (out of 480)	
J 30	480
J 60	303
J 90	NA
J120	NA

SRCPSP

2015 (JOS) Memory Requirements

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

OLD CTMC	
Average max \# states (x1000)	
J30	176
J60	374499
J90	NA
J120	NA

SRCPSP

2015 (JOS) VS new CTMC

NEW CTMC	
Avg max \# states (x1K) for = inst.	
J 30	1.99
J 60	508
J 90	NA
J 120	NA

OLD CTMC	
Average max \# states (x1000)	
J30	176
J60	374499
J90	NA
J120	NA

SRCPSP

2015 (JOS) VS new CTMC

NEW CTMC	
Avg max \# states (x1K) for = inst.	
J 30	1.99
J 60	508
J 90	NA
J 120	NA

OLD CTMC	
Average max \# states (x1000)	
J30	176
J60	374499
J90	NA
J120	NA

On average, we reduce memory requirements by a factor of 733!

SRCPSP

New CTMC Instances Solved

NEW CTMC	
Instances solved (out of 480)	
J30	480
J60	480
J90	196
J120	10

SRCPSP

New CTMC Instances Solved

NEW CTMC	
Instances solved (out of 480)	
J30	480
J60	480
J90	196
J120	10

We are the first to solve instances of the J 90 and J 120 data sets to optimality!

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
- CPU times
- Memory requirements
- New state-of-the-art results
- Comparison of performance for the SNPV:
- CPU times
- Memory requirements
- New state-of-the-art results
- Conclusion

Creemers, Leus, \& Lambrecht (2010)

Creemers, Leus, \& Lambrecht (2010)

- Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 2010

Creemers, Leus, \& Lambrecht (2010)

- Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 2010
- Current state-of-the-art for solving the SNPV

Creemers, Leus, \& Lambrecht (2010)

- Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 2010
- Current state-of-the-art for solving the SNPV
- Uses CTMC of Kulkarni \& Adlakha

Creemers, Leus, \& Lambrecht (2010)

- Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 2010
- Current state-of-the-art for solving the SNPV
- Uses CTMC of Kulkarni \& Adlakha
- Computational performance tested on dataset with different n and Order Strength (OS)

Creemers, Leus, \& Lambrecht (2010)

- Scheduling Markovian PERT networks to maximize the net present value, Operations Research Letters, 2010
- Current state-of-the-art for solving the SNPV
- Uses CTMC of Kulkarni \& Adlakha
- Computational performance tested on dataset with different n and Order Strength (OS)
- Bottleneck = memory requirements

SNPV

2010 (ORL) Instances Solved

OLD CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	29
$n=50$	30	30	4
$n=60$	30	30	0
$n=70$	30	22	0

SNPV

2010 (ORL) CPU Times

OLD CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	29
$n=50$	30	30	4
$n=60$	30	30	0
$n=70$	30	22	0

OLD CTMC			
Average CPU time (s)			
	OS $=0.8$	OS $=0.6$	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	27
$n=40$	0	7	2338
$n=50$	0	100	52268
$n=60$	1	2210	NA
$n=70$	3	17496	NA

SNPV

2010 (ORL) VS new CTMC

NEW CTMC			
Average CPU time (s) for same instances			
	OS $=0.8$	OS $=0.6$	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	0
$n=40$	0	0	7
$n=50$	0	1	82
$n=60$	0	6	NA
$n=70$	0	34	NA

OLD CTMC			
Average CPU time (s)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	27
$n=40$	0	7	2338
$n=50$	0	100	52268
$n=60$	1	2210	NA
$n=70$	3	17496	NA

SNPV

2010 (ORL) VS new CTMC

NEW CTMC			
Average CPU time (s) for same instances			
	OS $=0.8$	OS $=0.6$	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	0
$n=40$	0	0	7
$n=50$	0	1	82
$n=60$	0	6	NA
$n=70$	0	34	NA

OLD CTMC			
Average CPU time (s)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	27
$n=40$	0	7	2338
$n=50$	0	100	52268
$n=60$	1	2210	NA
$n=70$	3	17496	NA

On average, we improve computation times by a factor of 492!

SNPV

2010 (ORL) Memory Requirements

OLD CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	29
$n=50$	30	30	4
$n=60$	30	30	0
$n=70$	30	22	0

2010 (ORL) Memory Requirements

OLD CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	29
$n=50$	30	30	4
$n=60$	30	30	0
$n=70$	30	22	0

OLD CTMC			
Average max \# states (x1000)			
	OS $=0.8$	OS $=0.6$	OS $=0.4$
$n=10$	0	0	1
$n=20$	0	4	55
$n=30$	2	49	1560
$n=40$	8	534	47073
$n=50$	27	4346	526020
$n=60$	92	42279	NA
$n=70$	287	216028	NA

SNPV

2010 (ORL) VS new CTMC

NEW CTMC			
Avg max \# states (x1000) for same inst.			
	OS $=0.8$	OS = 0.6	OS = 0.4
$n=10$	0	0	0
$n=20$	0	0	2
$n=30$	0	2	17
$n=40$	1	9	172
$n=50$	2	40	1055
$n=60$	4	175	NA
$n=70$	8	593	NA

OLD CTMC			
Average max \# states (x1000)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	0	0	1
$n=20$	0	4	55
$n=30$	2	49	1560
$n=40$	8	534	47073
$n=50$	27	4346	526020
$n=60$	92	42279	NA
$n=70$	287	216028	NA

SNPV

2010 (ORL) VS new CTMC

NEW CTMC			
Avg max \# states (x1000) for same inst.			
	OS = 0.8	OS = 0.6	OS = 0.4
$n=10$	0	0	0
$n=20$	0	0	2
$n=30$	0	2	17
$n=40$	1	9	172
$n=50$	2	40	1055
$n=60$	4	175	NA
$n=70$	8	593	NA

OLD CTMC			
Average max \# states (x1000)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	0	0	1
$n=20$	0	4	55
$n=30$	2	49	1560
$n=40$	8	534	47073
$n=50$	27	4346	526020
$n=60$	92	42279	NA
$n=70$	287	216028	NA

On average, we reduce memory requirements by a factor of 403!

SNPV

New CTMC Instances Solved

NEW CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	30
$n=50$	30	30	30
$n=60$	30	30	30
$n=70$	30	30	30

SNPV

New CTMC CPU Times

NEW CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	30
$n=50$	30	30	30
$n=60$	30	30	30
$n=70$	30	30	30

NEW CTMC			
Average CPU time (s)			
	OS $=0.8$	OS $=0.6$	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	0
$n=40$	0	0	22
$n=50$	0	1	476
$n=60$	0	11	16869
$n=70$	0	99	263012

SNPV

New CTMC CPU Times

NEW CTMC			
Instances solved (out of 30)			
	OS = 0.8	OS = 0.6	OS $=0.4$
$n=10$	30	30	30
$n=20$	30	30	30
$n=30$	30	30	30
$n=40$	30	30	30
$n=50$	30	30	30
$n=60$	30	30	30
$n=70$	30	30	30

NEW CTMC			
Average CPU time (s)			
	OS $=0.8$	OS $=0.6$	OS $=0.4$
$n=10$	0	0	0
$n=20$	0	0	0
$n=30$	0	0	0
$n=40$	0	0	22
$n=50$	0	1	476
$n=60$	0	11	16869
$n=70$	0	99	263012

CPU times have become the new
bottleneck

SNPV

To preempt or not to preempt?

SNPV

To preempt or not to preempt?

- If an activity has a zero cost, it is optimal to start that activity as early as possible

SNPV

To preempt or not to preempt?

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities

SNPV

To preempt or not to preempt?

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities
- The remainder of activity i has a zero cost (the cost has already been incurred at the start of activity i)

SNPV

To preempt or not to preempt?

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities
- The remainder of activity i has a zero cost (the cost has already been incurred at the start of activity i)
\Rightarrow It is optimal to start the remainder of activity i at time t

SNPV

To preempt or not to preempt?

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities
- The remainder of activity i has a zero cost (the cost has already been incurred at the start of activity i)
\Rightarrow It is optimal to start the remainder of activity i at time t
\Rightarrow It is optimal not to preempt activity i

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
- CPU times
- Memory requirements
- New state-of-the-art results
- Comparison of performance for the SNPV:
- CPU times
- Memory requirements
- New state-of-the-art results
- Conclusion

Conclusion

Conclusion

- New CTMC that only keeps track of finished activities

Conclusion

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni \& Adlakha

Conclusion

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni \& Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV

Conclusion

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni \& Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV
- Bottleneck shifted from memory requirements to CPU times

Conclusion

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni \& Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV
- Bottleneck shifted from memory requirements to CPU times
- Only "drawback" is that the new CTMC allows activities to be preempted

Conclusion

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni \& Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV
- Bottleneck shifted from memory requirements to CPU times
- Only "drawback" is that the new CTMC allows activities to be preempted
- We prove that there is no preemption when solving the SNPV

MOMENTS \& DISTRIBUTION OF PROJECT NPV

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Introduction

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation

Introduction

- We study the NPV of a project where:
- Activities have general duration distributions
- Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation
- We develop exact, closed-form expressions for the moments of project NPV \& develop an accurate approximation of the NPV distribution itself

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage - Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a single cash flow obtained after a single stage

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}

NPV of a single cash flow obtained after a single stage

$f_{w}(t)$

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred

NPV of a single cash flow obtained after a single stage

$v_{w}=c_{w} \int_{0}^{\infty} f_{w}(t) e^{-r t} d t$

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred
- $r=$ discount rate

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred
- $r=$ discount rate
- $M_{f_{w}(t)}(-r)=$ moment generating function of $f_{w}(t)$ about $-r$

NPV of a single cash flow obtained after a single stage

- $c_{w}=$ cash flow incurred at start of stage w
- $v_{w}=$ NPV of cash flow c_{w}
- $f_{w}(t)=$ distribution of time until cash flow c_{w} is incurred
- $r=$ discount rate
- $M_{f_{w}(t)}(-r)=$ moment generating function of $f_{w}(t)$ about $-r$
- $\phi_{w}(r)=$ discount factor for stage w

NPV of a single cash flow obtained after a single stage

NPV of a single cash flow obtained after a single stage

- Using discount factor $\phi_{w}(r)$, we can obtain the moments of the NPV:

```
- \(\mu_{w}=c_{w} \phi_{w}(r)\)
- \(\sigma_{w}^{2}=c_{w}^{2}\left(\phi_{w}(2 r)-\phi_{w}^{2}(r)\right)\)
- \(\gamma_{w}=c_{w}^{3}\left(\phi_{w}(3 r)-3 \phi_{w}(2 r) \phi_{w}(r)+2 \phi_{w}^{3}(r)\right) \sigma_{w}^{-3}\)
\(-\theta_{w}=c_{w}^{4}\left(\phi_{w}(4 r)-4 \phi_{w}(3 r) \phi_{w}(r)+6 \phi_{w}(2 r) \phi_{w}^{2}(r)-3 \phi_{w}^{4}(r)\right) \sigma_{w}^{-4}\)
```


NPV of a single cash flow obtained after a single stage

$$
v_{w}=c_{w} \phi_{w}(r)
$$

- Using discount factor $\phi_{w}(r)$, we can obtain the moments of the NPV:

```
- \(\mu_{w}=c_{w} \phi_{w}(r)\)
- \(\sigma_{w}^{2}=c_{w}^{2}\left(\phi_{w}(2 r)-\phi_{w}^{2}(r)\right)\)
- \(\gamma_{w}=c_{w}^{3}\left(\phi_{w}(3 r)-3 \phi_{w}(2 r) \phi_{w}(r)+2 \phi_{w}^{3}(r)\right) \sigma_{w}^{-3}\)
\(-\theta_{w}=c_{w}^{4}\left(\phi_{w}(4 r)-4 \phi_{w}(3 r) \phi_{w}(r)+6 \phi_{w}(2 r) \phi_{w}^{2}(r)-3 \phi_{w}^{4}(r)\right) \sigma_{w}^{-4}\)
```

- The CDF \& PDF of the NPV of c_{w} are:
$-G_{w}(v)=1-F_{w}\left(\ln \left(\frac{c_{w}}{v}\right) r^{-1}\right)$
$-g_{w}(v)=\frac{f_{w}\left(\ln \left(\frac{c_{w}}{v}\right) r^{-1}\right)}{|r| v}$

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

$$
v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r)
$$

NPV of a single cash flow obtained after multiple stages

$$
v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r) \quad v_{w}=c_{w} \prod_{i=1}^{w} \phi_{i}(r)
$$

NPV of a single cash flow obtained after multiple stages

$$
\begin{aligned}
& \text { now }_{f_{1}(t)}^{\phi_{w}(r)} \text { stage } 1, \ldots\left(\begin{array}{c}
\phi_{w}(t) \\
w-1
\end{array} \phi_{w}(r)\right. \\
& v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r) \quad v_{w}=c_{w} \prod_{i=1}^{w} \phi_{i}(r) \quad v_{w}=c_{w} \phi_{1, w}(r)
\end{aligned}
$$

NPV of a single cash flow obtained after multiple stages

$$
\begin{aligned}
& \text { now }_{f_{1}(t)}^{\phi_{w}(r)} \text { stage } 14 \phi_{c_{w}}(r) \text { stage } f_{w}(t) \\
& v_{w}=c_{w} \phi_{1}(r) \ldots \phi_{w}(r) \quad v_{w}=c_{w} \prod_{i=1}^{w} \phi_{i}(r) \quad v_{w}=c_{w} \phi_{1, w}(r)
\end{aligned}
$$

- We can obtain the moments of the NPV of cash flow c_{w} :

$$
\begin{aligned}
& -\mu_{w}=c_{w} \phi_{1, w}(r) \\
& -\sigma_{w}^{2}=c_{w}^{2}\left(\phi_{1, w}(2 r)-\phi_{1, w}^{2}(r)\right)
\end{aligned}
$$

$$
-\ldots
$$

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

NPV of a single cash flow obtained after multiple stages

- The mean and variance of the distribution of time until cash flow c_{w} is incurred is:

$$
\begin{aligned}
& -d_{1, w}=\sum_{i=1}^{w} d_{i} \\
& -s_{1, w}^{2}=\sum_{i=1}^{w} s_{i}^{2}
\end{aligned}
$$

NPV of a single cash flow obtained after multiple stages

- The mean and variance of the distribution of time until cash flow c_{w} is incurred is:
$-d_{1, w}=\sum_{i=1}^{w} d_{i}$
$-s_{1, w}^{2}=\sum_{i=1}^{w} s_{i}^{2}$
- If stage w is preceded by a sufficient number of stages, $f_{1, w}(t)$ is normally distributed with mean $d_{1, w}$ and variance $s_{1, w}^{2}$

NPV of a single cash flow obtained after multiple stages

- The mean and variance of the distribution of time until cash flow c_{W} is incurred is:
$-d_{1, w}=\sum_{i=1}^{w} d_{i}$
$-s_{1, w}^{2}=\sum_{i=1}^{w} s_{i}^{2}$
- If stage w is preceded by a sufficient number of stages, $f_{1, w}(t)$ is normally distributed with mean $d_{1, w}$ and variance $s_{1, w}^{2}$
- If $f_{1, w}(t)$ is normally distributed, the NPV of cash flow c_{w} is lognormally distributed!

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a serial project

NPV of a serial project

NPV of a serial project

NPV of a serial project

NPV of a serial project

NPV of a serial project

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

NPV of a serial project

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

	Mean μ
$\mu_{w}=c_{w} a_{1}$	

$\boldsymbol{\Sigma}_{c}(w, w)=\sigma_{w}^{2}=c_{w}^{2}\left(a_{2}-a^{2}\right)$
$\Sigma_{c}(w, x)=c_{w} c_{x} b_{1}\left(a_{2}-a^{2}\right)=c_{w}^{-1} c_{x} b_{1} \Sigma_{c}(w, w)$

Central coskewness matrix $\boldsymbol{\Gamma}_{\mathrm{c}}$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, w, w)=\gamma_{w} \sigma_{w}^{3}=c_{w}^{3}\left(a_{3}-3 a_{2} a_{1}+2 a^{3}\right)$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, w, x)=c_{w}^{-1} c_{x} b_{1} \boldsymbol{\Gamma}_{\mathrm{c}}(w, w, w)$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, x, x)=c_{w} c_{x}^{2}\left(a_{3} b_{2}-a_{2} a_{1}\left(2 b^{2}+b_{2}\right)+2 a^{3} b^{2}\right)$
$\boldsymbol{\Gamma}_{\mathrm{c}}(w, x, y)=c_{x}^{-1} c_{y} h_{1} \boldsymbol{\Gamma}_{\mathrm{c}}(w, x, x)$

Central cokurtosis matrix Θ_{c}
$\Theta_{\mathrm{c}}(w, w, w, w)=\theta_{w} \sigma_{w}^{4}=c_{w}^{4}\left(a_{4}-4 a_{3} a_{1}+6 a_{2} a^{2}-3 a^{4}\right)$
$\Theta_{\mathrm{c}}(w, w, w, x)=c_{w}^{-1} c_{x} b_{1} \Theta_{c}(w, w, w, w)$
$\Theta_{\mathrm{c}}(w, w, x, x)=c_{w}^{2} c_{x}^{2}\left(a_{4} b_{2}-2 a_{3} a_{1}\left(b_{2}+b^{2}\right)+a_{2} a^{2}\left(b_{2}+5 b^{2}\right)-3 a^{4} b^{2}\right)$
$\Theta_{\mathrm{c}}(w, x, x, x)=c_{w} c_{x}^{3}\left(a_{4} b_{3}-a_{3} a_{1}\left(b_{3}+3 b_{2} b_{1}\right)+3 a_{2} a^{2}\left(b_{2} b_{1}+b^{3}\right)-3 a^{4} b^{3}\right)$
$\Theta_{\mathrm{c}}(w, w, x, y)=c_{x}^{-1} c_{y} h_{1} \Theta_{c}(w, w, x, x)$
$\Theta_{\mathrm{c}}(w, x, x, y)=c_{x}^{-1} c_{y} h_{1} \Theta_{c}(w, x, x, x)$
$\Theta_{\mathrm{c}}(w, x, y, y)=c_{w} c_{x} c_{y}^{2}\left(\left(a_{4}-a_{3} a_{1}\right) b_{3} h_{2}-\left(h_{2}+2 h^{2}\right)\left(\left(a_{3} a_{1}-a_{2} a^{2}\right) b_{2} b_{1}\right)+\left(a_{2} a^{2}-a^{4}\right) 3 b^{3} h^{2}\right)$
$\Theta_{\mathrm{c}}(w, x, y, z)=c_{y}^{-1} c_{z} o_{1}(r) \Theta_{c}(w, x, y, y)$

$a_{i}=\phi_{1, w-1}(i r)$	$b_{i}=\phi_{w, x-1}(i r)$	$h_{i}=\phi_{x, y-1}(i r)$	$o_{i}=\phi_{y, z-1}(i r)$
$a^{i}=\phi_{1, w-1}^{i}(r)$	$b^{i}=\phi_{w, x-1}^{i}(r)$	$h^{i}=\phi_{x, y-1}^{i}(r)$	

NPV of a serial project

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution

NPV of a serial project

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution
The example below illustrates the accuracy of the threeparameter lognormal distribution $\left(\mathfrak{L}_{3}\right)$:

Agenda

- Introduction
- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Optimal sequence of stages

- Moments of known sequence can be obtained using exact closed-form formulas

Optimal sequence of stages

- Moments of known sequence can be obtained using exact closed-form formulas
- How to obtain the optimal sequence of a set of stages that are potentially precedence related?

Optimal sequence of stages

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time

Optimal sequence of stages

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time
- Efficient algorithms are available for the general case

Agenda

- Introduction

- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

NPV of a general project

NPV of a general project Scheduling policies

stage

stage \longrightarrow stage

NPV of a general project Scheduling policies

NPV of a general project Scheduling policies

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5)
\end{aligned}
$$

NPV of a general project Scheduling policies

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200
\end{aligned}
$$

NPV of a general project Scheduling policies

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Scheduling policies

$$
c_{1}=-50 \quad \text { Serial policies: }
$$

stage

- 1-2-3
- 1-3-2
- 2-1-3
- 2-3-1
- 3-1-2
- 3-2-1

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Scheduling policies

- Serial policies:
- 1-2-3
- 1-3-2
- 2-1-3
- 2-3-1
- 3-1-2
- 3-2-1
- Early-Start (ES) policy: Start 1 \& 2. Start 3 upon completion of 2.

NPV of a general project Scheduling policies

- Serial policies:
- 1-2-3
- 1-3-2
- 2-1-3
- 2-3-1
- 3-1-2
- 3-2-1
- Early-Start (ES) policy: Start 1 \& 2. Start 3 upon completion of 2.
- Optimal policy: Start 2. Start 1 \& 3 upon completion of 2 .

NPV of a general project Early-Start policy

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Early-Start policy

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Early-Start policy

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?
- What discount factor do we use?
- $\phi_{1}(r)$
- $\phi_{2,3}(r)$

NPV of a general project Early-Start policy

$c_{2}=-20 \quad c_{3}=-10$

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?
- What discount factor do we use?
- $\phi_{1}(r)$
- $\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic

NPV of a general project Early-Start policy

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- When do we incur the payoff?
- After stage 1?
- After stage 2\&3?
- What discount factor do we use?
- $\phi_{1}(r)$
- $\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic
\Rightarrow Approximations are required!

NPV of a general project Optimal policy

$$
\begin{aligned}
& f_{1}(t) \sim \operatorname{Exp}(1) \\
& f_{2,3}(t) \sim \operatorname{Exp}(0.5) \\
& p=200 \quad r=0.1
\end{aligned}
$$

NPV of a general project Optimal policy

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel

NPV of a general project Optimal policy

$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?
- $\phi_{2}(r) \phi_{1}(r)$
- $\phi_{2}(r) \phi_{3}(r)$

NPV of a general project Optimal policy

$f_{1}(t) \sim E x p(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?
- $\phi_{2}(r) \phi_{1}(r)$
- $\phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages $1 \& 3$!

NPV of a general project Optimal policy

$f_{1}(t) \sim E x p(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?
- $\phi_{2}(r) \phi_{1}(r)$
- $\phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages $1 \& 3$!
\Rightarrow We need to determine the discount factor for this maximum distribution

NPV of a general project Optimal policy

$c_{2}=-20$
$f_{1}(t) \sim \operatorname{Exp}(1)$
$f_{2,3}(t) \sim \operatorname{Exp}(0.5)$
$p=200 \quad r=0.1$

- Payoff is obtained after stage 2 \& after stages $1 \& 3$ that are executed in parallel
- What discount factor do we use?

$$
\begin{aligned}
& -\phi_{2}(r) \phi_{1}(r) \\
& -\phi_{2}(r) \phi_{3}(r)
\end{aligned}
$$

- The payoff is obtained after the maximum duration of stages $1 \& 3$!
\Rightarrow We need to determine the discount factor for this maximum distribution
\Rightarrow If this is not possible, approximations are required!

NPV of a general project

The example below illustrates the accuracy of the three-parameter lognormal distribution $\left(\mathscr{L}_{3}\right)$ for the ES and the optimal policy:

Agenda

- Introduction

- Serial projects:
- Single cash flow after a single stage
- Single cash flow after multiple stages
- NPV of a serial project
- Optimal sequence of stages
- General projects
- Conclusions

Conclusion

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions

Conclusion

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions
- Higher moments \& the distribution of the NPV of a general project can be approximated

TIME FOR QUESTIONS?

