Some recent advances in project scheduling

Stefan Creemers (June 27, 2018)

INTRODUCTION

• PhD @ KU Leuven (2009)

- PhD @ **KU Leuven** (2009)
- Visiting Professor @ KU
 Leuven (FT rank 94)

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU
 Leuven (FT rank 94)
- Full Professor @ IESEG
 (FT rank 61)

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU
 Leuven (FT rank 94)
- Full Professor @ IESEG
 (FT rank 61)
- Board of Directors PICS
 Belgium

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU
 Leuven (FT rank 94)
- Full Professor @ IESEG
 (FT rank 61)
- Board of Directors PICS
 Belgium
- Associate Editor INFORMS
 transactions on education

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU
 Leuven (FT rank 94)
- Full Professor @ IESEG
 (FT rank 61)
- Board of Directors PICS
 Belgium
- Associate Editor INFORMS
 transactions on education
- Research interests: project scheduling, logistics, queueing theory...

- PhD @ KU Leuven (2009)
- Visiting Professor @ KU
 Leuven (FT rank 94)
- Full Professor @ IESEG
 (FT rank 61)
- Board of Directors PICS
 Belgium
- Associate Editor INFORMS
 transactions on education
- Research interests: <u>project</u> <u>scheduling</u>, logistics, queueing theory...

• Construction of the Rhein-Hellweg-Express

- Construction of the Rhein-Hellweg-Express
- Development of the Ebola vaccine

- Construction of the Rhein-Hellweg-Express
- Development of the Ebola vaccine
- Organizing the FIFA World Cup

What?

Activities

What? Who?

Activities

What? Who?

Activities Resources

Activities Resources

Activities Resources Schedule/Policy

Activities Resources Schedule/Policy

Activities

Resources

Schedule/Policy

Makespan/NPV...

• Minimize makespan:

• Minimize makespan:

– Deterministic activity durations:

- Minimize makespan:
 - Deterministic activity durations:
 - No preemption: **RCPSP**

- Minimize makespan:
 - Deterministic activity durations:
 - No preemption: **RCPSP**
 - Preemption: PRCPSP

- Minimize makespan:
 - Deterministic activity durations:
 - No preemption: **RCPSP**
 - Preemption: PRCPSP
 - Stochastic activity durations:
 - No preemption: **SRCPSP**
 - Preemption: PSRCPSP

- Minimize makespan:
 - Deterministic activity durations:
 - No preemption: **RCPSP**
 - Preemption: PRCPSP
 - Stochastic activity durations:
 - No preemption: **SRCPSP**
 - Preemption: PSRCPSP
- Maximize NPV

Stochastic activity durations: SNPV

- Minimize makespan:
 - Deterministic activity durations:
 - No preemption: **RCPSP**
 - Preemption: PRCPSP
 - Stochastic activity durations:
 - No preemption: **SRCPSP**
 - Preemption: PSRCPSP
- Maximize NPV

Stochastic activity durations: SNPV

• All these problems are NP-hard!

(Resource-Constrained Project Scheduling Problem)

(Resource-Constrained Project Scheduling Problem)

(Resource-Constrained Project Scheduling Problem)

АСТ	DUR	RESOURCE USE
1	2	1
2	2	1
3	2	1

Resource availability: 2

(Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	2	1
2	2	1
3	2	1

Resource availability: 2

(Preemptive Resource-Constrained Project Scheduling Problem)

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)
SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	4	1
2	{2,4}	1
3	2	2
4	2	1

Resource availability: 2

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

ACT	DUR	RESOURCE USE
1	4	1
2	{2,4}	1
3	2	2
4	2	1

Resource availability: 2

SRCPSP

(Stochastic Resource-Constrained Project Scheduling Problem)

PSRCPSP

(Preemptive Stochastic Resource-Constrained Project Scheduling Problem)

(Stochastic expected NPV maximization problem)

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	{2,4}	0
3	1	-5

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	{2,4}	0
3	1	-5

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	{2,4}	0
3	1	-5

(Stochastic expected NPV maximization problem)

ACT	DUR	COST
1	4	0
2	{2,4}	0
3	1	-5

• Google Scholar: 5370 hits

- Google Scholar: 5370 hits
- Sciencedirect: 474 results

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem
- Solution heuristics implemented in software (even in Microsoft Project!)

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem
- Solution heuristics implemented in software (even in Microsoft Project!)
- NP-hard! Easy to understand, hard to solve!

- Google Scholar: 5370 hits
- Sciencedirect: 474 results
- Probably the most famous OR problem
- Solution heuristics implemented in software (even in Microsoft Project!)
- NP-hard! Easy to understand, hard to solve!
- Still 48 open problems for J60 (a set of benchmark problems)

1959

Bowman (MIT): first optimal solution

• Exact approach

- Exact approach
- Work in progress

- Exact approach
- Work in progress
- Preliminary results:

- Exact approach
- Work in progress
- Preliminary results:
 - 17 times faster than current state-of-the-art

- Exact approach
- Work in progress
- Preliminary results:
 - 17 times faster than current state-of-the-art
 - Solutions to many unsolved benchmark problems

- Exact approach
- Work in progress
- Preliminary results:
 - 17 times faster than current state-of-the-art
 - Solutions to many unsolved benchmark problems
 - We expect final results to be even better

MARKOVIAN PERT NETWORKS: A NEW CTMC

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Comparison of performance for the SNPV:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Conclusion

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Comparison of performance for the SNPV:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Conclusion

Kulkarni & Adlakha (1986)

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT Networks, *Operations Research*, 1986

- Markov and Markov-Regenerative PERT Networks, *Operations Research*, 1986
- 208 citations

- Markov and Markov-Regenerative PERT Networks, *Operations Research*, 1986
- 208 citations
- First to study Markovian PERT networks

- Markov and Markov-Regenerative PERT Networks, *Operations Research*, 1986
- 208 citations
- First to study Markovian PERT networks
- Use of a CTMC to model a network

- Markov and Markov-Regenerative PERT Networks, *Operations Research*, 1986
- 208 citations
- First to study Markovian PERT networks
- Use of a CTMC to model a network
- The states of the CTMC are defined by three sets: idle, ongoing, & finished activities

- Markov and Markov-Regenerative PERT Networks, *Operations Research*, 1986
- 208 citations
- First to study Markovian PERT networks
- Use of a CTMC to model a network
- The states of the CTMC are defined by three sets: idle, ongoing, & finished activities
 ⇒For a project with *n* activities there are up to
 - 3ⁿ states!

• An activity *j* is either:

- Idle ($\theta_j = 0$)

- An activity *j* is either:
 - Idle ($\theta_i = 0$)
 - Ongoing $(\theta_j=1)$

- An activity *j* is either:
 - Idle ($\theta_i = 0$)
 - Ongoing $(\theta_i=1)$
 - Finished ($\dot{\theta}_i = 2$)

- An activity *j* is either:
 - Idle ($\theta_i = 0$)
 - Ongoing $(\theta_i=1)$
 - Finished ($\theta_j = 2$)
- The state of the system is represented by a vector:

 $\boldsymbol{\theta} = \{\theta_1, \ \theta_2, \ \dots \ \theta_n\}$

- An activity *j* is either:
 - Idle ($\theta_i = 0$)
 - Ongoing $(\theta_i=1)$
 - Finished ($\theta_j=2$)
- The state of the system is represented by a vector:

$$\boldsymbol{\theta} = \{ \boldsymbol{\theta}_1, \, \boldsymbol{\theta}_2, \, \dots \, \boldsymbol{\theta}_n \}$$

• Up to
$$3^n = 729$$
 states

- An activity *j* is either:
 - Idle ($\theta_i = 0$)
 - Ongoing $(\theta_j=1)$
 - Finished ($\theta_j = 2$)
- The state of the system is represented by a vector:
- $\boldsymbol{\theta} = \{\theta_1, \ \theta_2, \ \dots \ \theta_n\}$
- Up to $3^n = 729$ states
- Example feasible state:
- $\theta = \{2, 1, 1, 0, 0, 0\}$

- An activity *j* is either:
 - Idle ($\theta_i = 0$)
 - Ongoing $(\theta_i=1)$
 - Finished ($\theta_j = 2$)
- The state of the system is represented by a vector:
- $\boldsymbol{\theta} = \{\theta_1, \ \theta_2, \ \dots \ \theta_n\}$
- Up to $3^n = 729$ states
- Example feasible state:
- $\theta = \{2, 1, 1, 0, 0, 0\}$
- Example Infeasible state:
 θ = {0,0,0,2,2,2}

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Comparison of performance for the SNPV:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Conclusion

 We are the first to introduce a new CTMC since the CTMC of Kulkarni & Adlakha that was published in 1986

- We are the first to introduce a new CTMC since the CTMC of Kulkarni & Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni & Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities
- \Rightarrow up to 2^n states (instead of 3^n states)

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni & Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities
- \Rightarrow up to 2ⁿ states (instead of 3ⁿ states)
- ⇒Huge reduction in memory requirements (= THE bottleneck for CTMC of Kulkarni & Adlakha)

New CTMC

- We are the first to introduce a new CTMC since the CTMC of Kulkarni & Adlakha that was published in 1986
- In this new CTMC, states are defined by the set of finished activities
- \Rightarrow up to 2^n states (instead of 3^n states)
- ⇒Huge reduction in memory requirements (= THE bottleneck for CTMC of Kulkarni & Adlakha)
- A potential "drawback" is that the new CTMC allows activities to be preempted

• An activity *j* is either:

- Idle ($\theta_j = 0$)

- An activity *j* is either:
 - Idle ($\theta_j=0$)
 - Finished ($\theta_i = 1$)

- An activity *j* is either:
 - Idle ($\theta_j=0$)
 - Finished ($\theta_j = 1$)
- Up to $2^n = 64$ states

- An activity **j** is either:
 - Idle ($\theta_j = 0$)
 - Finished ($\theta_j = 1$)
- Up to $2^n = 64$ states
- Example feasible state:
- $\theta = \{1, 0, 0, 0, 0, 0\}$

- An activity *j* is either:
 - Idle ($\theta_j = 0$)
 - Finished ($\theta_j = 1$)
- Up to $2^n = 64$ states
- Example feasible state:
- $\theta = \{1, 0, 0, 0, 0, 0\}$
- What activities are ongoing? 2? 3? 2 and 3?

- An activity *j* is either:
 - Idle ($\theta_j=0$)
 - Finished ($\theta_j = 1$)
- Up to $2^n = 64$ states
- Example feasible state:
- $\theta = \{1, 0, 0, 0, 0, 0\}$
- What activities are ongoing? 2? 3? 2 and 3?
- Preemption is possible

In this state, it is optimal if activities 2 & 3 are ongoing

In this state, it is optimal if activities 2 & 3 are ongoing

Activity 2 finishes \rightarrow we end up in state $\theta = \{1, 1, 0, 0, 0, 0\}$

Activity 2 finishes \rightarrow we end up in state $\theta = \{1, 1, 0, 0, 0, 0\}$

Here, it is optimal if activity 4 is ongoing \rightarrow activity 3 is preempted!

Activity 2 finishes \rightarrow we end up in state $\theta = \{1, 1, 0, 0, 0, 0\}$

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Comparison of performance for the SNPV:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Conclusion

• Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, *Journal of Scheduling*, 2015

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, *Journal of Scheduling*, 2015
- Current state-of-the-art for solving the SRCPSP

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, *Journal of Scheduling*, 2015
- Current state-of-the-art for solving the SRCPSP
- Uses CTMC of Kulkarni & Adlakha

S c h	E D U L	nal of ING
1 Terlinger	Marrie a sum	1

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, *Journal of Scheduling*, 2015
- Current state-of-the-art for solving the SRCPSP
- Uses CTMC of Kulkarni & Adlakha
- Computational performance tested on well-known PSPLIB data sets (J30, J60, J90, & J120)

S c h	E D U L	natof ING
1 teringer	Martin Street	Anna 1 Maria

- Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, *Journal of Scheduling*, 2015
- Current state-of-the-art for solving the SRCPSP
- Uses CTMC of Kulkarni & Adlakha
- Computational performance tested on well-known PSPLIB data sets (J30, J60, J90, & J120)
- Bottleneck = memory requirements
SRCPSP

2015 (JOS) Instances Solved

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

SRCPSP 2015 (JOS) CPU Times

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

OLD CTMC	
Average CPU time (s)	
J30	0.48
J60	1591
J90	NA
J120	NA

SRCPSP 2015 (JOS) VS new CTMC

NEW CTMC	
Avg CPU time (s) for same inst.	
J30	0.02
J60	81.6
J90	NA
J120	NA

OLD CTMC	
Average CPU time (s)	
J30	0.48
J60	1591
J90	NA
J120	NA

SRCPSP 2015 (JOS) VS new CTMC

NEW CTMC	
Avg CPU time (s) for same inst.	
J30	0.02
J60	81.6
J90	NA
J120	NA

OLD CTMC	
Average CPU time (s)	
J30	0.48
J60	1591
J90	NA
J120	NA

On average, we improve computation

times by a factor of 19!

SRCPSP

2015 (JOS) Memory Requirements

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

SRCPSP

2015 (JOS) Memory Requirements

OLD CTMC	
Instances solved (out of 480)	
J30	480
J60	303
J90	NA
J120	NA

OLD CTMC	
Average max # states (x1000)	
J30	176
J60	374499
J90	NA
J120	NA

SRCPSP 2015 (JOS) VS new CTMC

NEW CTMC	
Avg max # states (x1K) for = inst.	
J30	1.99
J60	508
J90	NA
J120	NA

OLD CTMC	
Average max # states (x1000)	
J30	176
J60	374499
J90	NA
J120	NA

SRCPSP 2015 (JOS) VS new CTMC

NEW CTMC		
Avg max # states (x1K) for = inst.		
J30 1.99		
J60	508	
J90 NA		
J120	NA	

OLD CTMC			
Average max # states (x1000)			
J30 176			
J60	374499		
J90	NA		
J120 NA			

On average, we reduce memory requirements

by a factor of 733!

SRCPSP

New CTMC Instances Solved

NEW CTMC			
Instances solved (out of 480)			
J30 480			
J60 480			
J90 196			
J120 10			

SRCPSP

New CTMC Instances Solved

NEW CTMC			
Instances solved (out of 480)			
J30 480			
J60 480			
J90 196			
J120	10		

We are the first to solve instances of the

J90 and J120 data sets to optimality!

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Comparison of performance for the SNPV:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Conclusion

 Scheduling Markovian PERT networks to maximize the net present value, *Operations Research Letters*, 2010

Copera
Copera
Curren
SNPV

- Scheduling Markovian PERT networks to maximize the net present value, *Operations Research Letters*, 2010
- Current state-of-the-art for solving the SNPV

- Scheduling Markovian PERT networks to maximize the net present value, *Operations Research Letters*, 2010
- Current state-of-the-art for solving the SNPV
- Uses CTMC of Kulkarni & Adlakha

Constantions Research Letters

- Scheduling Markovian PERT networks to maximize the net present value, *Operations Research Letters*, 2010
- Current state-of-the-art for solving the SNPV
- Uses CTMC of Kulkarni & Adlakha
- Computational performance tested on dataset with different *n* and Order Strength (OS)

- Scheduling Markovian PERT networks to maximize the net present value, *Operations Research Letters*, 2010
- Current state-of-the-art for solving the SNPV
- Uses CTMC of Kulkarni & Adlakha
- Computational performance tested on dataset with different *n* and Order Strength (OS)
- Bottleneck = memory requirements

2010 (ORL) Instances Solved

OLD CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8 OS = 0.6 OS = 0.4			
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	29	
n = 50	30	30	4	
n = 60	30	30	0	
n = 70	30	22	0	

SNPV 2010 (ORL) CPU Times

OLD CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8 OS = 0.6 OS = 0.4			
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	29	
n = 50	30	30	4	
n = 60	30	30	0	
n = 70	30	22	0	

OLD CTMC			
	Average Cl	PU time (s)	
	OS = 0.8	OS = 0.6	OS = 0.4
n = 10	0	0	0
n = 20	0	0	0
n = 30	0	0	27
n = 40	0	7	2338
n = 50	0	100	52268
n = 60	1	2210	NA
n = 70	3	17496	NA

SNPV 2010 (ORL) VS new CTMC

NEW CTMC					
Average C	CPU time (s) for same	instances		
	OS = 0.8 OS = 0.6 OS = 0.4				
n = 10	0	0	0		
n = 20	0	0	0		
n = 30	0	0	0		
n = 40	0	0	7		
n = 50	0	1	82		
n = 60	0	6	NA		
n = 70	0	34	NA		

OLD CTMC					
	Average CPU time (s)				
	OS = 0.8 OS = 0.6 OS = 0.4				
n = 10	0	0	0		
n = 20	0	0	0		
n = 30	0	0	27		
n = 40	0	7	2338		
n = 50	0	100	52268		
n = 60	1	2210	NA		
n = 70	3	17496	NA		

SNPV 2010 (ORL) VS new CTMC

NEW CTMC			
Average C	CPU time (s) for same	instances
	OS = 0.8	OS = 0.6	OS = 0.4
n = 10	0	0	0
n = 20	0	0	0
n = 30	0	0	0
n = 40	0	0	7
n = 50	0	1	82
n = 60	0	6	NA
n = 70	0	34	NA

OLD CTMC					
	Average Cl	PU time (s)			
	OS = 0.8 OS = 0.6 OS = 0.4				
n = 10	0	0	0		
n = 20	0	0	0		
n = 30	0	0	27		
n = 40	0	7	2338		
n = 50	0	100	52268		
n = 60	1	2210	NA		
n = 70	3	17496	NA		

On average, we improve computation

times by a factor of 492!

2010 (ORL) Memory Requirements

OLD CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8 OS = 0.6 OS = 0.4			
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	29	
n = 50	30	30	4	
n = 60	30	30	0	
n = 70	30	22	0	

2010 (ORL) Memory Requirements

OLD CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8	OS = 0.6	OS = 0.4	
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	29	
n = 50	30	30	4	
n = 60	30	30	0	
n = 70	30	22	0	

OLD CTMC						
Ave	rage max #	[±] states (x1	000)			
	OS = 0.8 OS = 0.6 OS = 0.4					
n = 10	0	0	1			
n = 20	0	4	55			
n = 30	2	49	1560			
n = 40	8	534	47073			
n = 50	27	4346	526020			
n = 60	92	42279	NA			
n = 70	287	216028	NA			

SNPV 2010 (ORL) VS new CTMC

NEW CTMC				
Avg max	# states (x	1000) for sa	ame inst.	
	OS = 0.8	OS = 0.6	OS = 0.4	
n = 10	0	0	0	
n = 20	0	0	2	
n = 30	0	2	17	
n = 40	1	9	172	
n = 50	2	40	1055	
n = 60	4	175	NA	
n = 70	8	593	NA	

OLD CTMC						
Ave	rage max #	[±] states (x1	000)			
	OS = 0.8 OS = 0.6 OS = 0.4					
n = 10	0	0	1			
n = 20	0	4	55			
n = 30	2	49	1560			
n = 40	8	534	47073			
n = 50	27	4346	526020			
n = 60	92	42279	NA			
n = 70	287	216028	NA			

SNPV 2010 (ORL) VS new CTMC

NEW CTMC					
Avg max	# states (x	1000) for sa	ame inst.		
	OS = 0.8 OS = 0.6 OS = 0.4				
n = 10	0	0	0		
n = 20	0	0	2		
n = 30	0	2	17		
n = 40	1	9	172		
n = 50	2	40	1055		
n = 60	4	175	NA		
n = 70	8	593	NA		

OLD CTMC				
Ave	rage max #	[±] states (x1	000)	
	OS = 0.8	OS = 0.6	OS = 0.4	
n = 10	0	0	1	
n = 20	0	4	55	
n = 30	2	49	1560	
n = 40	8	534	47073	
n = 50	27	4346	526020	
n = 60	92	42279	NA	
n = 70	287	216028	NA	

On average, we reduce memory requirements

by a factor of 403!

New CTMC Instances Solved

NEW CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8	OS = 0.6	OS = 0.4	
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	30	
n = 50	30	30	30	
n = 60	30	30	30	
n = 70	30	30	30	

SNPV New CTMC CPU Times

NEW CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8	OS = 0.6	OS = 0.4	
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	30	
n = 50	30	30	30	
n = 60	30	30	30	
n = 70	30	30	30	

NEW CTMC					
Average CPU time (s)					
	OS = 0.8 OS = 0.6 OS = 0.4				
n = 10	0	0	0		
n = 20	0	0	0		
n = 30	0	0	0		
n = 40	0	0	22		
n = 50	0	1	476		
n = 60	0	11	16869		
n = 70	0	99	263012		

SNPV New CTMC CPU Times

NEW CTMC				
Inst	tances solv	ed (out of	30)	
	OS = 0.8	OS = 0.6	OS = 0.4	
n = 10	30	30	30	
n = 20	30	30	30	
n = 30	30	30	30	
n = 40	30	30	30	
n = 50	30	30	30	
n = 60	30	30	30	
n = 70	30	30	30	

NEW CTMC				
Average CPU time (s)				
OS = 0.8 OS = 0.6 OS = 0.4				
n = 10	0	0	0	
n = 20	0	0	0	
n = 30	0	0	0	
n = 40	0	0	22	
n = 50	0	1	476	
n = 60	0	11	16869	
n = 70	0	99	263012	

CPU times have become the new

bottleneck

To preempt or not to preempt?

• If an activity has a zero cost, it is optimal to start that activity as early as possible

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities
- The remainder of activity *i* has a zero cost (the cost has already been incurred at the start of activity *i*)

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities
- The remainder of activity *i* has a zero cost (the cost has already been incurred at the start of activity *i*)
- ⇒It is optimal to start the remainder of activity *i* at time *t*

- If an activity has a zero cost, it is optimal to start that activity as early as possible
- If at time t activity i is preempted, the remainder of activity i joins the set of eligible activities
- The remainder of activity *i* has a zero cost (the cost has already been incurred at the start of activity *i*)
- ⇒It is optimal to start the remainder of activity *i* at time *t*
- \Rightarrow It is optimal not to preempt activity *i*

Agenda

- CTMC of Kulkarni and Adlakha (1986)
- New CTMC
- Comparison of performance for the SRCPSP:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Comparison of performance for the SNPV:
 - CPU times
 - Memory requirements
 - New state-of-the-art results
- Conclusion

Conclusion
• New CTMC that only keeps track of finished activities

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni & Adlakha

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni & Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni & Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV
- Bottleneck shifted from memory requirements to CPU times

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni & Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV
- Bottleneck shifted from memory requirements to CPU times
- Only "drawback" is that the new CTMC allows activities to be preempted

- New CTMC that only keeps track of finished activities
- Significantly reduces memory requirements when compared with CTMC of Kulkarni & Adlakha
- New state-of-the-art for solving the SRCPSP and the SNPV
- Bottleneck shifted from memory requirements to CPU times
- Only "drawback" is that the new CTMC allows activities to be preempted
- We prove that there is no preemption when solving the SNPV

MOMENTS & DISTRIBUTION OF PROJECT NPV

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

Agenda

- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation

- We study the NPV of a project where:
 - Activities have general duration distributions
 - Cash flows are incurred during the lifetime of the project
- For such settings, most of the literature has focused on determining the expected NPV (eNPV) of a project
- Higher moments/distribution of project NPV are currently determined using Monte Carlo simulation
- We develop exact, closed-form expressions for the moments of project NPV & develop an accurate approximation of the NPV distribution itself

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

• c_w = cash flow incurred at start of stage w

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred

$$v_w = c_w \int_0^\infty f_w(t) \, e^{-rt} \, dt$$

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred
- r = discount rate

$$v_w = c_w \int_0^\infty f_w(t) e^{-rt} dt \quad v_w = c_w M_{f_w(t)}(-r)$$

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred
- r = discount rate
- $M_{f_w(t)}(-r)$ = moment generating function of $f_w(t)$ about -r

$$v_w = c_w \int_0^\infty f_w(t) e^{-rt} dt \quad v_w = c_w M_{f_w(t)}(-r) \quad v_w = c_w \phi_w(r)$$

- c_w = cash flow incurred at start of stage w
- $v_w = NPV$ of cash flow c_w
- $f_w(t)$ = distribution of time until cash flow c_w is incurred
- r = discount rate
- $M_{f_w(t)}(-r)$ = moment generating function of $f_w(t)$ about -r
- $\phi_w(r)$ = discount factor for stage w

- Using discount factor $\phi_w(r)$, we can obtain the moments of the NPV:
 - $\mu_{w} = c_{w}\phi_{w}(r)$ $- \sigma_{w}^{2} = c_{w}^{2}(\phi_{w}(2r) - \phi_{w}^{2}(r))$ $- \gamma_{w} = c_{w}^{3}(\phi_{w}(3r) - 3\phi_{w}(2r)\phi_{w}(r) + 2\phi_{w}^{3}(r))\sigma_{w}^{-3}$ $- \theta_{w} = c_{w}^{4}(\phi_{w}(4r) - 4\phi_{w}(3r)\phi_{w}(r) + 6\phi_{w}(2r)\phi_{w}^{2}(r) - 3\phi_{w}^{4}(r))\sigma_{w}^{-4}$

• Using discount factor $\phi_w(r)$, we can obtain the moments of the NPV:

$$- \mu_{w} = c_{w}\phi_{w}(r)
- \sigma_{w}^{2} = c_{w}^{2}(\phi_{w}(2r) - \phi_{w}^{2}(r))
- \gamma_{w} = c_{w}^{3}(\phi_{w}(3r) - 3\phi_{w}(2r)\phi_{w}(r) + 2\phi_{w}^{3}(r))\sigma_{w}^{-3}
- \theta_{w} = c_{w}^{4}(\phi_{w}(4r) - 4\phi_{w}(3r)\phi_{w}(r) + 6\phi_{w}(2r)\phi_{w}^{2}(r) - 3\phi_{w}^{4}(r))\sigma_{w}^{-4}$$

The CDF & PDF of the NPV of c_w are:

$$- G_w(v) = 1 - F_w\left(\ln\left(\frac{c_w}{v}\right)r^{-1}\right)$$
$$- g_w(v) = \frac{f_w\left(\ln\left(\frac{c_w}{v}\right)r^{-1}\right)}{|r|v}$$

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_{1} & \mathsf{stage}_{1} & \mathsf{stage}_{w-1} & \mathsf{f}_w(t) & \mathsf{stage}_{w} \\ v_w \phi_1(r) & 1 & \phi_{\dots}(r) & w-1 & \phi_w(r) & \mathsf{stage}_{w} \\ c_w \end{array}$$

 $v_w = c_w \phi_1(r) \dots \phi_w(r)$

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_1 \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ \mathbf{f}_w(r) &$$

$$v_w = c_w \phi_1(r) \dots \phi_w(r)$$
 $v_w = c_w \prod_{i=1}^w \phi_i(r)$

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_1 \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ v_w \phi_1(r) & \mathsf{f}_w(r) \\ \mathbf{f}_w(r) &$$

 $v_w = c_w \phi_1(r) \dots \phi_w(r)$ $v_w = c_w \prod_{i=1}^w \phi_i(r)$ $v_w = c_w \phi_{1,w}(r)$

$$\begin{array}{c|c} \mathsf{now}_{f_1(t)} & \mathsf{stage}_{1} & \mathsf{stage}_{1} & \mathsf{stage}_{w-1} & \mathsf{f}_w(t) & \mathsf{stage}_{w} \\ v_w \phi_1(r) & 1 & \phi_{\dots}(r) & w-1 & \phi_w(r) & \mathsf{stage}_{w} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

 $v_w = c_w \phi_1(r) \dots \phi_w(r)$ $v_w = c_w \prod_{i=1}^w \phi_i(r)$ $v_w = c_w \phi_{1,w}(r)$

• We can obtain the moments of the NPV of cash flow c_w : $-\mu_w = c_w \phi_{1,w}(r)$ $-\sigma_w^2 = c_w^2(\phi_{1,w}(2r) - \phi_{1,w}^2(r))$ $-\dots$

• The mean and variance of the distribution of time until cash flow *c*_w is incurred is:

$$-d_{1,w} = \sum_{i=1}^{w} d_i$$

$$- s_{1,w}^2 = \sum_{i=1}^{w} s_i^2$$

• The mean and variance of the distribution of time until cash flow c_w is incurred is:

$$- d_{1,w} = \sum_{i=1}^{w} d_i$$

$$- s_{1,w}^2 = \sum_{i=1}^w s_i^2$$

• If stage w is preceded by a sufficient number of stages, $f_{1,w}(t)$ is normally distributed with mean $d_{1,w}$ and variance $s_{1,w}^2$

• The mean and variance of the distribution of time until cash flow c_w is incurred is:

$$- d_{1,w} = \sum_{i=1}^{w} d_i$$

$$- s_{1,w}^2 = \sum_{i=1}^w s_i^2$$

- If stage w is preceded by a sufficient number of stages, $f_{1,w}(t)$ is normally distributed with mean $d_{1,w}$ and variance $s_{1,w}^2$
- If $f_{1,w}(t)$ is normally distributed, the NPV of cash flow c_w is lognormally distributed!

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

 $v = v_1 + \ldots + v_{w-1} + v_w$

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

We can obtain the moments of the NPV of the serial project using exact, closed-form formula's:

Mean μ

 $\mu_w = c_w a_1$

Covariance matrix Σ_c $\Sigma_c(w, w) = \sigma_w^2 = c_w^2(a_2 - a^2)$ $\Sigma_c(w, x) = c_w c_x b_1 (a_2 - a^2) = c_w^{-1} c_x b_1 \Sigma_c(w, w)$

Central coskewness matrix Γ_c $\Gamma_c(w, w, w) = \gamma_w \sigma_w^3 = c_w^3 (a_3 - 3a_2a_1 + 2a^3)$ $\Gamma_c(w, w, x) = c_w^{-1}c_xb_1\Gamma_c(w, w, w)$ $\Gamma_c(w, x, x) = c_wc_x^2 (a_3b_2 - a_2a_1 (2b^2 + b_2) + 2a^3b^2)$ $\Gamma_c(w, x, y) = c_x^{-1}c_yh_1\Gamma_c(w, x, x)$

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution

We develop a three-parameter lognormal distribution that can be used to match the mean, variance, and skewness of the true NPV distribution

The example below illustrates the accuracy of the threeparameter lognormal distribution (\mathcal{L}_3):

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

 Moments of known sequence can be obtained using exact closed-form formulas

- Moments of known sequence can be obtained using exact closed-form formulas
- How to obtain the optimal sequence of a set of stages that are potentially precedence related?

 The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time

- The problem to find the optimal sequence of stages is equivalent to the Least Cost Fault Detection Problem (LCFDP)
- The LCFDP minimizes the cost of the sequential diagnosis of a number of system components
- In the absence of precedence relations, the optimal sequence can be found in polynomial time
- Efficient algorithms are available for the general case

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

NPV of a general project

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ p = 200

p = 200 r = 0.1

- Serial policies:

 1-2-3
 1-3-2
 - 2-1-3
 - 2-3-1
 - 3-1-2
 - 3-2-1

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- Serial policies:
 - 1-2-3
 - 1-3-2
 - 2-1-3
 - 2-3-1
 - 3-1-2
 - 3-2-1
- Early-Start (ES) policy: Start 1 & 2. Start 3 upon completion of 2.

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- Serial policies:
 - 1-2-3
 - 1-3-2
 - 2-1-3
 - 2-3-1
 - 3-1-2
 - 3-2-1

. . .

- Early-Start (ES) policy: Start 1 & 2. Start 3 upon completion of 2.
- Optimal policy: Start 2. Start 1 & 3 upon completion of 2.

NPV of a general project Early-Start policy

p = 200 r = 0.1

NPV of a general project Early-Start policy

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

NPV of a general project Early-Start policy

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?
- What discount factor do we use?

 $-\phi_1(r) - \phi_{2,3}(r)$

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$
NPV of a general project Early-Start policy

 $c_2 = -20$ $c_3 = -10$ stage stage

 $f_1(t) \sim Exp(1)$ $f_{2.3}(t) \sim Exp(0.5)$ p = 200 r = 0.1

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?
- What discount factor do we use?
 - $-\phi_1(r)$
 - $-\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic

NPV of a general project Early-Start policy

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

- When do we incur the payoff?
 - After stage 1?
 - After stage 2&3?
- What discount factor do we use?
 - $-\phi_1(r)$
 - $-\phi_{2,3}(r)$
- There no longer exists a fixed sequence/the sequence is probabilistic

 \Rightarrow Approximations are required!

p = 200 r = 0.1

Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel

 $f_1(t) \sim Exp(1)$ $f_{2,3}(t) \sim Exp(0.5)$ $p = 200 \quad r = 0.1$

 $f_{2,3}(t) \sim Exp(0.5)$

p = 200 r = 0.1

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?

 $- \phi_{2}(r) \phi_{1}(r) \\ - \phi_{2}(r) \phi_{3}(r)$

 $f_{2.3}(t) \sim Exp(0.5)$

p = 200 r = 0.1

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?
 - $\phi_{2}(r) \phi_{1}(r)$ $- \phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages 1 & 3!

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?
 - $\phi_{2}(r) \phi_{1}(r) \\ \phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages 1 & 3!
- ⇒ We need to determine the discount factor for this maximum distribution

- Payoff is obtained after stage 2 & after stages 1 & 3 that are executed in parallel
- What discount factor do we use?
 - $\phi_{2}(r) \phi_{1}(r) \\ \phi_{2}(r) \phi_{3}(r)$
- The payoff is obtained after the maximum duration of stages 1 & 3!
- ⇒ We need to determine the discount factor for this maximum distribution
- ⇒ If this is not possible, approximations are required!

NPV of a general project

The example below illustrates the accuracy of the three-parameter lognormal distribution (\mathcal{L}_3) for the ES and the optimal policy:

Agenda

- Introduction
- Serial projects:
 - Single cash flow after a single stage
 - Single cash flow after multiple stages
 - NPV of a serial project
 - Optimal sequence of stages
- General projects
- Conclusions

• We obtain exact, closed-form expressions for the moments of the NPV of serial projects

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions

- We obtain exact, closed-form expressions for the moments of the NPV of serial projects
- The distribution of the NPV of a serial project can be approximated accurately using a threeparameter lognormal distribution
- The optimal sequence of stages can be found efficiently
- The eNPV of a general project can be obtained using exact, closed-form expressions
- Higher moments & the distribution of the NPV of a general project can be approximated

TIME FOR QUESTIONS?

